Skip to main content
Glama

Dingo MCP Server

by MigoXLab
redpajama_data_evaluated_by_prompt.md4.21 kB
# Dataset Redpajama ## Dataset Introduction This dataset aims to evaluate the accuracy of the built-in prompt words in dingo, therefore, the open-source dataset redpajama is selected, and data is extracted from it to build a test set. | Field Name | Description | |--------------|------------------------------------------------------------------------------------| | data_id | Data ID, without special meaning, users can modify it according to their own needs | | content | Data to be tested | | language | Language type | | error_status | Data status, True for negative examples, False for positive examples | | type_list | Negative types for negative examples, empty list for positive examples | | name_list | Negative names for negative examples, empty list for positive examples | | reason_list | Negative introductions for negative examples, empty list for positive examples | Links:<br> https://huggingface.co/datasets/chupei/redpajama_good_model<br> https://huggingface.co/datasets/chupei/redpajama_bad_model ### Dataset Composition | Type | Count | |-----------------------------------------|-------| | Positive Examples | 101 | | Negative Examples: disfluency | 4 | | Negative Examples: dissimilarity | 3 | | Negative Examples: disunderstandability | 2 | | Negative Examples: incompleteness | 27 | | Negative Examples: insecurity | 16 | | Negative Examples: irrelevance | 49 | ## Prompt Introduction The built-in **PromptTextQualityV2** is used as the prompt for this test.<br> Specific content can be referred to: [Introduction to PromptTextQualityV2](../../../dingo/model/prompt/prompt_text_quality.py)<br> The built-in prompt collection can be referred to: [Prompt Collection](../../../dingo/model/prompt) ## Evaluation Results ### Concept Introduction Both positive and negative examples will generate corresponding summary files after evaluation, so the results need to be defined and the concepts clarified. | Name | Description | |----------|-----------------------------------------------------------------------------| | TP | True Positive: Number of positive examples evaluated as positive | | FP | False Positive: Number of negative examples evaluated as positive | | TN | True Negative: Number of negative examples evaluated as negative | | FN | False Negative: Number of positive examples evaluated as negative | | Accuracy | TP / (TP + FP) Ratio of positive examples among those evaluated as positive | | Recall | TP / (TP + FN) Ratio of positive examples correctly evaluated as positive | | F1 | (Accuracy + Recall) / 2 | ### Result Display | Dataset Name | TP | FP | TN | FN | Accuracy% | Recall% | F1 | |--------------|----|----|-----|----|-----------|---------|----| | redpajama | 95 | 0 | 101 | 6 | 100 | 94 | 97 | ## Evaluation Method ```python from dingo.config import InputArgs from dingo.exec import Executor input_data = { "eval_group": "v2", "input_path": "chupei/redpajama_good_model", "save_data": True, "save_correct": True, "save_raw": True, "max_workers": 10, "batch_size": 10, "data_format": "jsonl", "column_content": "content", "custom_config": { "prompt_list": ["PromptTextQualityV2"], "llm_config": { "detect_text_quality_detail": { "key": "Your Key", "api_url": "Your Url", } } } } input_args = InputArgs(**input_data) executor = Executor.exec_map["local"](input_args) result = executor.execute() print(result) ```

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/MigoXLab/dingo'

If you have feedback or need assistance with the MCP directory API, please join our Discord server