Skip to main content
Glama

Dingo MCP Server

by MigoXLab
kaoti_data_evaluated_by_prompt.md3.78 kB
# Dataset Kaoti ## Dataset Introduction This dataset aims to evaluate the accuracy of the built-in kaoti prompt words in dingo, therefore, the test question data was selected to construct the test set. | Field Name | Description | |--------------|------------------------------------------------------------------------------------| | id | DATA id, without special meaning, users can modify it according to their own needs | | grade_class | The classification of students based on their academic grade levels | | major | Main area of knowledge and skills | | content | Data to be tested | | ### Dataset Composition | Type | Count | |---------------------------------------------------------------------------------------|-------| | Positive Examples | 100 | | Negative Examples: <br/>1. ineffectiveness<br/>2. dissimilarity<br/>3. incompleteness | 100 | ## Prompt Introduction The built-in **PromptTextQualityV3Kaoti** is used as the prompt for this test.<br> Specific content can be referred to: [Introduction to PromptTextQualityV3Kaoti](../../../dingo/model/prompt/prompt_text_quality_kaoti.py)<br> The built-in prompt collection can be referred to: [Prompt Collection](../../../dingo/model/prompt) ## Evaluation Results ### Concept Introduction Both positive and negative examples will generate corresponding summary files after evaluation, so the results need to be defined and the concepts clarified. | Name | Description | |-----------|-----------------------------------------------------------------------------| | TP | True Positive: Number of positive examples evaluated as positive | | FP | False Positive: Number of negative examples evaluated as positive | | TN | True Negative: Number of negative examples evaluated as negative | | FN | False Negative: Number of positive examples evaluated as negative | | Precision | TP / (TP + FP) Ratio of positive examples among those evaluated as positive | | Recall | TP / (TP + FN) Ratio of positive examples correctly evaluated as positive | | F1 | 2 * Accuracy * Recall / (Accuracy + Recall) | ### Result Display | Dataset Name | TP | FP | TN | FN | Precision% | Recall% | F1 | |--------------|-----|-----|-----|-----|------------|---------|------| | redpajama | 86 | 15 | 85 | 14 | 85 | 86 | 0.856| ## Evaluation Method ```python from dingo.config import InputArgs from dingo.exec import Executor input_data = { "eval_group": "kaoti", "input_path": "/your/dataset/path",# s3 path :qa-huawei "save_data": True, "save_correct": True, "save_raw": True, "max_workers": 10, "batch_size": 10, "data_format": "jsonl", "column_content": "content", "custom_config": { "prompt_list": ["PromptTextQualityV3Kaoti"], "llm_config": { "detect_text_quality_detail": { "key": "Your Key", "api_url": "Your Url", } } } } input_args = InputArgs(**input_data) executor = Executor.exec_map["local"](input_args) result = executor.execute() print(result) ```

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/MigoXLab/dingo'

If you have feedback or need assistance with the MCP directory API, please join our Discord server