Skip to main content
Glama

Dingo MCP Server

by MigoXLab
test_img_md.jsonl3.18 kB
{"id": "1", "content": "即当 \\(x\\longrightarrow0\\) 时, \\(f(x)\\) 与 \\(6x^{2}\\) 互为等价无穷小量,故 \\(c=6,k=3\\) ,应选A.\n\n# 强化20\n\n【解析】当 \\(x\\longrightarrow0^{2}\\) 时,有\n\n\\(\\alpha^{\\prime}=\\cos x^{2}\\rightarrow1\\) ,即 \\(\\alpha\\!\\sim\\!x\\) (为 \\(x\\) 的1阶无穷小量),\n\n\\(\\beta^{\\prime}\\!=\\!\\tan x\\cdot2x\\!\\sim\\!2x^{2}\\) 即 \\(\\beta\\!\\sim\\!\\frac{2}{3}x^{3}\\) (为 \\(x\\) 的3阶无穷小量),\n\n\\(\\gamma^{\\prime}=\\sin x^{\\frac{3}{7}}\\cdot\\frac{1}{2\\sqrt{x}}-x^{\\frac{3}{7}}\\frac{1}{2\\sqrt{x}}=\\frac{1}{2}x\\) 即 \\(\\gamma\\!\\sim\\!\\frac{1}{4}x^{2}\\) (为 \\(x\\) 的2阶无穷小量),\n\n所以当 \\(x\\longrightarrow0\\) 时无穷小量从低阶到高阶的顺序为 \\(\\alpha,\\gamma,\\beta\\) 故应选B.\n\n# 强化21\n\n【解析】方法一:导数定阶法\n\n由当 \\(x\\longrightarrow0^{2}\\) 时,\n\n\\(\\left[\\int_{0}^{x}\\left(\\mathrm{e}^{t^{2}}-1\\right)\\mathrm{d}t\\right]^{\\prime}=\\mathrm{e}^{x^{2}}-1-x^{2}\\) 故 \\(\\int_{0}^{x}\\left(\\mathrm{e}^{t^{2}}-1\\right)\\mathrm{d}t=\\frac{1}{3}x^{3}\\) 为3阶无穷小量;\\(\\left[\\int_{0}^{x}\\ln\\left(1+\\sqrt{t^{2}}\\right)\\mathrm{d}t\\right]^{\\prime}=\\ln\\left(1+\\sqrt{x^{2}}\\right)\\sim\\sqrt{x^{2}}\\) 故 \\(\\int_{0}^{x}\\ln\\left(1+\\sqrt{t^{2}}\\right)\\mathrm{d}t-\\frac{2}{5}x^{\\frac{2}{3}}\\) 为 \\(\\frac{5}{2}\\) 阶无穷小量;\\(\\left[\\int_{0}^{x}\\sin t^{2}\\mathrm{d}t\\right]^{\\prime}=\\sin(\\sin x)^{2}\\cos x-x^{2}\\) 故 \\(\\int_{0}^{x}\\sin t^{2}\\mathrm{d}t-\\frac{1}{3}x^{3}\\) 为3阶无穷小量;\\(\\left[\\int_{0}^{x}(1-\\cos t)\\,\\mathrm{d}t\\right]^{\\prime}-1-\\cos x-\\frac{1}{2}x^{2}\\) 故 \\(\\int_{0}^{x}(1-\\cos t)\\,\\mathrm{d}t-\\frac{1}{6}x^{3}\\) 为3阶无穷小量;\\(\\left[\\int_{0}^{1-\\cos x}\\sqrt{\\sin^{3}t}\\,\\mathrm{d}t\\right]^{\\prime}=\\sqrt{\\sin^{3}(1-\\cos x)}\\,\\cdot\\,\\sin x-\\frac{1}{2}x^{2}\\right]^{\\frac{3}{2}}\\,\\cdot\\,x=\\frac{1}{2\\sqrt{2}}\\,x^{4}\\) 故 \\(\\int_{0}^{1-\\cos x}\\sqrt{\\sin^{3}t}\\,\\mathrm{d}t\\) 为5阶无穷小量,应选E.\n\n\n\n# 方法二:经验法,见【敲重点】\n\n对于选项A, \\(\\int_{0}^{x}\\left(\\mathrm{e}^{t^{2}}-1\\right)\\mathrm{d}t\\) 为 \\(x\\longrightarrow0^{2}\\) 时的 \\(n(m+1)=1\\times(2+1)=3\\) 阶无穷小量;对于选项B, \\(\\int_{0}^{x}\\ln\\left(1+\\sqrt{t^{2}}\\right)\\mathrm{d}t\\) 为 \\(x\\longrightarrow0^{2}\\) 时的 \\(n(m+1)=1\\times\\left({\\frac{3}{2}}+1\\right)={\\frac{5}{2}}\\) 阶无穷小量;对于选项C, \\(\\int_{0}^{1\\sim x}\\sin t^{2}\\mathrm{d}t\\) 为 \\(x\\longrightarrow0^{2}\\) 时的 \\(n(m+1)=1\\times(2+1)=3\\) 阶无穷小量;对于选项D, \\(\\int_{0}^{x}\\left(1-\\cos t\\right)\\mathrm{d}t\\) 为 \\(x\\longrightarrow0^{2}\\) 时的 \\(n(m+1)=1\\times(2+1)=3\\) 阶无穷小量,对于选项E, \\(\\int_{0}^{1-\\cos x}\\sqrt{\\sin^{3}t}\\,\\mathrm{d}t\\) 为 \\(x\\longrightarrow0^{2}\\) 时的 \\(n(m+1)=2\\times\\left({\\frac{3}{2}}+1\\right)=5\\) 阶无穷小量,故应选E.", "img": "../../test/data/c6be64e4-1dd4-4bd4-b923-55a63a6de397_page_1.jpg"}

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/MigoXLab/dingo'

If you have feedback or need assistance with the MCP directory API, please join our Discord server