x.md•1.99 kB
# 文案一
🚀 RELEASE: The most comprehensive AI data quality metrics documentation ever assembled!
📊 50+ evaluation metrics
🎓 Academic-backed (RedPajama, CLIP, NIMA...)
⚡ Rule-based + LLM evaluation
📖 Metrics: https://github.com/MigoXLab/dingo/blob/dev/docs/metrics.md
⭐ GitHub: https://github.com/MigoXLab/dingo
What's your go-to data quality metric? 🤔
---
# 文案二
🔥 Dingo MCP Server is LIVE!
Integrate AI data quality evaluation directly into Cursor IDE
⚡ Real-time evaluation
🛠️ Seamless workflow
📊 Instant feedback
⭐ GitHub: https://github.com/MigoXLab/dingo
#MCP #Cursor #AITools #DataQuality
---
# 文案三 - Dingo 1.9.0 Release
## Tweet 1 - Main Release
🚀 Dingo 1.9.0 is HERE!
✨ RAG hallucination detection
⚙️ Revamped config system
📚 DeepWiki document Q&A
AI data quality just got smarter 🧠
⭐ https://github.com/MigoXLab/dingo
#DataQuality #RAG #AI
---
## Tweet 2 - RAG Focus
🎯 RAG hallucination detection hits 94.6% accuracy!
Smart retrieval + context validation = goodbye AI hallucinations
⭐ https://github.com/MigoXLab/dingo
#RAG #AI #HallucinationDetection
---
## Tweet 3 - DeepWiki
📚 DeepWiki turns docs into smart assistants!
Multi-language support + 1s response time
📖 Try: https://deepwiki.com/MigoXLab/dingo
⭐ GitHub: https://github.com/MigoXLab/dingo
#Documentation #AI
---
# 文案四 - Dingo × ArtiMuse Integration
Ready to upgrade from "gut feeling" to "standardized selection"?
🔗 Dingo: github.com/MigoXLab/dingo
🔗 ArtiMuse: github.com/thunderbolt215/ArtiMuse
Perfect for content QA, brand guidelines, or creative iteration!
#AI #ImageGeneration #QualityAssurance
## Standalone Tweet Option
🚀 Built an automated image quality pipeline: nano banana generates → ArtiMuse evaluates (8 aesthetic dimensions) → Dingo orchestrates everything
Result: 75% pass rate, detailed feedback on composition/lighting/originality
Open source: github.com/MigoXLab/dingo