Skip to main content
Glama

MCP Autonomous Analyst

by MadMando

Autonomous Analyst

🧠 Overview

Autonomous Analyst is a local, agentic AI pipeline that:

  • Analyzes tabular data

  • Detects anomalies with Mahalanobis distance

  • Uses a local LLM (llama3.2:1b via Ollama) to generate interpretive summaries

  • Logs results to ChromaDB for semantic recall

  • Is fully orchestrated via the Model Context Protocol (MCP)


⚙️ Features

Component

Description

FastAPI Web UI

Friendly dashboard for synthetic or uploaded datasets

MCP Tool Orchestration

Each process step is exposed as a callable MCP tool

Anomaly Detection

Mahalanobis Distance-based outlier detection

Visual Output

Saved scatter plot of inliers vs. outliers

Local LLM Summarization

Insights generated using

llama3.2:1b

via Ollama

Vector Store Logging

Summaries are stored in ChromaDB for persistent memory

Agentic Planning Tool

A dedicated LLM tool (

autonomous_plan

) determines next steps based on dataset context

Agentic Flow

LLM + memory + tool use + automatic reasoning + context awareness


🧪 Tools Defined (via MCP)

Tool Name

Description

LLM Used

generate_data

Create synthetic tabular data (Gaussian + categorical)

analyze_outliers

Label rows using Mahalanobis distance

plot_results

Save a plot visualizing inliers vs outliers

summarize_results

Interpret and explain outlier distribution using

llama3.2:1b

summarize_data_stats

Describe dataset trends using

llama3.2:1b

log_results_to_vector_store

Store summaries to ChromaDB for future reference

search_logs

Retrieve relevant past sessions using vector search (optional LLM use)

⚠️

autonomous_plan

Run the full pipeline, use LLM to recommend next actions automatically


🤖 Agentic Capabilities

  • Autonomy: LLM-guided execution path selection with autonomous_plan

  • Tool Use: Dynamically invokes registered MCP tools via LLM inference

  • Reasoning: Generates technical insights from dataset conditions and outlier analysis

  • Memory: Persists and recalls knowledge using ChromaDB vector search

  • LLM: Powered by Ollama with llama3.2:1b (temperature = 0.1, deterministic)


🚀 Getting Started

1. Clone and Set Up

git clone https://github.com/MadMando/mcp-autonomous-analyst.git cd mcp-autonomous-analyst conda create -n mcp-agentic python=3.11 -y conda activate mcp-agentic pip install uv uv pip install -r requirements.txt

2. Start the MCP Server

mcp run server.py --transport streamable-http

3. Start the Web Dashboard

uvicorn web:app --reload --port 8001

Then visit: http://localhost:8000


🌐 Dashboard Flow

  • Step 1: Upload your own dataset or click Generate Synthetic Data

  • Step 2: The system runs anomaly detection on feature_1 vs feature_2

  • Step 3: Visual plot of outliers is generated

  • Step 4: Summaries are created via LLM

  • Step 5: Results are optionally logged to vector store for recall


📁 Project Layout

📦 autonomous-analyst/ ├── server.py # MCP server ├── web.py # FastAPI + MCP client (frontend logic) ├── tools/ │ ├── synthetic_data.py │ ├── outlier_detection.py │ ├── plotter.py │ ├── summarizer.py │ ├── vector_store.py ├── static/ # Saved plot ├── data/ # Uploaded or generated dataset ├── requirements.txt ├── .gitignore └── README.md

📚 Tech Stack

  • MCP SDK: mcp

  • LLM Inference: Ollama running llama3.2:1b

  • UI Server: FastAPI + Uvicorn

  • Memory: ChromaDB vector database

  • Data: pandas, matplotlib, scikit-learn


✅ .gitignore Additions

__pycache__/ *.pyc *.pkl .env static/ data/

🙌 Acknowledgements

This project wouldn't be possible without the incredible work of the open-source community. Special thanks to:

Tool / Library

Purpose

Repository

🧠

Model Context Protocol (MCP)

Agentic tool orchestration & execution

modelcontextprotocol/python-sdk

💬

Ollama

Local LLM inference engine (

llama3.2:1b

)

ollama/ollama

🔍

ChromaDB

Vector database for logging and retrieval

chroma-core/chroma

🌐

FastAPI

Interactive, fast web interface

tiangolo/fastapi

Uvicorn

ASGI server powering the FastAPI backend

encode/uvicorn

💡 If you use this project, please consider starring or contributing to the upstream tools that make it possible.

This repo was created with the assistance of a local rag-llm using llama3.2:1b

-
security - not tested
F
license - not found
-
quality - not tested

local-only server

The server can only run on the client's local machine because it depends on local resources.

A local, agentic AI pipeline that analyzes tabular data, detects anomalies, and generates interpretive summaries using local LLMs orchestrated via the Model Context Protocol.

  1. 🧠 Overview
    1. ⚙️ Features
    2. 🧪 Tools Defined (via MCP)
    3. 🤖 Agentic Capabilities
  2. 🚀 Getting Started
    1. 1. Clone and Set Up
    2. 2. Start the MCP Server
    3. 3. Start the Web Dashboard
  3. 🌐 Dashboard Flow
    1. 📁 Project Layout
      1. 📚 Tech Stack
        1. ✅ .gitignore Additions
          1. 🙌 Acknowledgements

            Related MCP Servers

            • -
              security
              F
              license
              -
              quality
              An agentic AI system that orchestrates multiple specialized AI tools to perform business analytics and knowledge retrieval, allowing users to analyze data and access business information through natural language queries.
              Last updated -
              2
            • -
              security
              F
              license
              -
              quality
              Intelligently analyzes codebases to enhance LLM prompts with relevant context, featuring adaptive context management and task detection to produce higher quality AI responses.
              Last updated -
            • -
              security
              A
              license
              -
              quality
              An AI-powered server that analyzes system log files to identify errors/warnings and recommend fixes using FastMCP, LangGraph ReAct agents, and Anthropic Claude.
              Last updated -
              1
              MIT License
            • -
              security
              A
              license
              -
              quality
              Provides AI coding assistants with context optimization tools including targeted file analysis, intelligent terminal command execution with LLM-powered output extraction, and web research capabilities. Helps reduce token usage by extracting only relevant information instead of processing entire files and command outputs.
              Last updated -
              5
              16
              45
              TypeScript
              MIT License

            View all related MCP servers

            MCP directory API

            We provide all the information about MCP servers via our MCP API.

            curl -X GET 'https://glama.ai/api/mcp/v1/servers/MadMando/mcp-autonomous-analyst'

            If you have feedback or need assistance with the MCP directory API, please join our Discord server