label_encode_categorical_columns
Convert categorical data columns into numerical format for linear regression model training by applying label encoding to prepare datasets.
Instructions
This function label encodes all the categorical columns.
Returns: String which confirms success of encoding process.
Input Schema
TableJSON Schema
| Name | Required | Description | Default |
|---|---|---|---|
No arguments | |||
Implementation Reference
- server.py:99-99 (registration)Registers the label_encode_categorical_columns function as an MCP tool using the FastMCP decorator.@mcp.tool()
- server.py:100-120 (handler)The handler function implements the logic to identify categorical columns in the global data context and apply label encoding to each using LabelEncoder from scikit-learn.def label_encode_categorical_columns() -> str: """ This function label encodes all the categorical columns. Returns: String which confirms success of encoding process. """ categorical_columns = context.get_data().select_dtypes(include=["object", "category"]).columns if len(categorical_columns) == 0: return "No categorical columns found to encode." # Initialize the LabelEncoder encoder = LabelEncoder() # Iterate over each categorical column and apply label encoding for column in categorical_columns: context.get_data()[column] = encoder.fit_transform(context.get_data()[column]) return "All categorical columns have been label encoded successfully."