Skip to main content
Glama
HeetVekariya

Linear Regression MCP

by HeetVekariya

check_category_columns

Identify and list categorical columns in your dataset to ensure proper data preprocessing for linear regression model training.

Instructions

This function check if data has categorical columns.

Returns: String which contains list of categorical columns.

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault

No arguments

Implementation Reference

  • server.py:82-97 (handler)
    The handler function for the 'check_category_columns' tool. It retrieves the data from the global context, selects categorical columns (object or category dtype), and returns a message listing them if any exist, or indicates none.
    @mcp.tool() def check_category_columns() -> str: """ This function check if data has categorical columns. Returns: String which contains list of categorical columns. """ categorical_data = context.get_data().select_dtypes(include=["object", "category"]) if not categorical_data.empty: return f"Data has following categorical columns: {", ".join(categorical_data.columns.to_list())}" else: return f"Data has no categorical columns."

Other Tools

Related Tools

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/HeetVekariya/Linear-Regression-MCP'

If you have feedback or need assistance with the MCP directory API, please join our Discord server