Skip to main content
Glama
DumplingAI

Dumpling AI MCP Server

Official
by DumplingAI

read-pdf-metadata

Extract metadata from PDF files using URLs or base64-encoded content to analyze document properties and structure for content processing workflows.

Instructions

Extract metadata from PDF files.

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
inputMethodYesInput method
filesYesArray of URLs or base64-encoded PDFs
requestSourceNoRequest source

Implementation Reference

  • Handler function that proxies the request to an external NWS API endpoint to read PDF metadata, using the provided API key and input parameters.
    async ({ inputMethod, files, requestSource }) => { const apiKey = process.env.DUMPLING_API_KEY; if (!apiKey) throw new Error("DUMPLING_API_KEY not set"); const response = await fetch(`${NWS_API_BASE}/api/v1/read-pdf-metadata`, { method: "POST", headers: { "Content-Type": "application/json", Authorization: `Bearer ${apiKey}`, }, body: JSON.stringify({ inputMethod, files, requestSource }), }); if (!response.ok) throw new Error(`Failed: ${response.status} ${await response.text()}`); const data = await response.json(); return { content: [{ type: "text", text: JSON.stringify(data, null, 2) }] };
  • Zod schema for input validation: inputMethod as 'url' or 'base64', array of files (URLs or base64), optional requestSource.
    { inputMethod: z.enum(["url", "base64"]).describe("Input method"), files: z.array(z.string()).describe("Array of URLs or base64-encoded PDFs"), requestSource: z.string().optional().describe("Request source"), },
  • src/index.ts:794-818 (registration)
    Registration of the 'read-pdf-metadata' tool on the MCP server, specifying name, description, input schema, and handler function.
    server.tool( "read-pdf-metadata", "Extract metadata from PDF files.", { inputMethod: z.enum(["url", "base64"]).describe("Input method"), files: z.array(z.string()).describe("Array of URLs or base64-encoded PDFs"), requestSource: z.string().optional().describe("Request source"), }, async ({ inputMethod, files, requestSource }) => { const apiKey = process.env.DUMPLING_API_KEY; if (!apiKey) throw new Error("DUMPLING_API_KEY not set"); const response = await fetch(`${NWS_API_BASE}/api/v1/read-pdf-metadata`, { method: "POST", headers: { "Content-Type": "application/json", Authorization: `Bearer ${apiKey}`, }, body: JSON.stringify({ inputMethod, files, requestSource }), }); if (!response.ok) throw new Error(`Failed: ${response.status} ${await response.text()}`); const data = await response.json(); return { content: [{ type: "text", text: JSON.stringify(data, null, 2) }] }; } );

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/DumplingAI/mcp-server-dumplingai'

If you have feedback or need assistance with the MCP directory API, please join our Discord server