DARPEngine

Integrations

  • Allows code analysis and repository evaluation capabilities as demonstrated in the example command 'Analyze https://github.com/BenderV/autochat'.

  • Provides repository analysis capabilities for quality assessment, topic identification, and package usage as shown in the server description.

  • Referenced as a required integration with API key setup, and mentioned in code structure as a provider integration for the chat system.

DARPエンジン

DARP 用の MCP 検索エンジン。

DARPEngine は、オンラインでホストされている MCP サーバーのメタデータを保存し、スマート検索機能を提供します。

特徴

  • シンプルなCLI
  • 検索へのAPIアクセス
  • 手動で接続するための検索結果を取得するためのMCPツール
  • サーバーベースのルーティングMCPツール:ユーザーのリクエストに応じて見つかったツールを使用してあらゆる質問に答えます

近日公開

  • .well-known/mcp.jsonのサポート
  • クローラー
  • 素晴らしいフロントエンド
  • ホスト版
  • さまざまなレベルのSSL証明書を検証し、この情報をスマートに統合して、機密性の高いMCPサーバーの偽装を困難にします。

インストール

export OPENAI_API_KEY=sk-... docker network create highkey_network docker compose build docker compose -f docker-compose.yaml -f docker-compose-debug.yaml up --build --wait

はじめる

付属のmcpツールを使用して、DARPEngineをMCPクライアント(Claude DesktopやCursorなど)に接続できます。SSEモードを選択し、エンドポイントとしてhttp://localhost:4689/sseを指定するだけです。

直接的なCLIの使用

もう1つの方法はCLIを使用することです。ほとんどのスクリプトは標準のPythonライブラリだけで動作しますが、ルーティングツールにはmcpパッケージが必要です。スクリプトの要件は次のようにインストールできます。

conda create -n darp 'python>=3.10' conda activate darp pip install -r mcp_server/requirements.txt

インストールが完了したら、スクリプトを使用できるようになります。

まず、エンジンにいくつかの MCP サーバーを追加する必要があります。例:

$ python scripts/darp-add.py --url http://memelabs.ai:3006/sse --name code_analysis --description "Analyze gitlab repo for quality, topics, packages use"

次に、リクエストを作成します。

$ python scripts/darp-search.py "Analyze https://github.com/BenderV/autochat" Found 1 servers: code_analysis

ルーティング ツールを使用すると、さらに有用な結果を得ることができます。

$ python scripts/darp-router.py "Analyze https://github.com/BenderV/autochat" assistant: [tool_calls] [tool] ... [tool] ... [tool] ... assistant: ### Code Quality The code in the AutoChat repository demonstrates a good level of quality concerning **readability**, **maintainability**, and adherence to best practices: - **Readability**: Consistent naming conventions are evident, with adherence to Python's PEP 8 styling guidelines. Descriptive function and variable names enhance the understanding of the code's purpose. - **Maintainability**: The code is structured to allow easy updates and modifications, with a clear separation of concerns observed through the use of classes and methods handling distinct functionalities. - **Best Practices**: Extensive use of exception handling, type annotations, and docstrings reflect best practices in Python development. Some TODO comments suggest areas for improvement, indicating that further attention is needed. ### Code Structure The code is organized into multiple files and modules, each serving a distinct purpose: - **Modular Design**: Various classes (e.g., `Autochat`, `Image`, `Message`) indicate a well-structured object-oriented design that promotes separation of concerns, making the code easier to navigate. - **Logical Organization**: Files are logically separated based on functionality. For example, `chat.py` focuses on chat-related logic, while `model.py` handles message and image processing. The utility functions in `utils.py` enhance reusability. - **Testing**: The presence of a test file (`tests/test_utils.py`) shows commitment to testing, crucial for code reliability. The use of `unittest` indicates a structured approach to testing individual components. ### Main Functionality The code appears to be part of an **AutoChat package**, providing a framework for building conversational agents. Key functionalities include: - **Chat Management**: The `Autochat` class acts as the main interface for managing conversations, handling message history, context, and interaction limits. - **Message Handling**: Classes like `Message` and `MessagePart` enable structured message creation and processing, accommodating different message types, including text and images. - **Functionality Extensions**: Methods like `add_tool` and `add_function` allow dynamic addition of tools and functions, facilitating customization of the chat experience. - **Provider Integration**: Different API provider integrations (e.g., OpenAI, Anthropic) are encapsulated within respective classes, allowing flexibility in backend communication. - **Utilities**: Utility functions offer additional capabilities such as CSV formatting and function parsing that support main chat operations. Overall, the codebase is well-organized and showcases a thoughtful approach to developing a conversational AI framework. There is room for further refinement and enhancement, particularly in documentation and clarity of variable names. ### Library Usage The project makes use of **AI libraries**, indicated by its functionality related to conversational agents and integration with AI service providers. This supports its ability to manage interactions with AI models efficiently. ### Summary The AutoChat project is a chat system designed for communication with various AI models, primarily through the `Autochat` class, which manages conversations and supports complex message types, including text and images. The code is moderately complex due to its integration with external APIs and its ability to handle diverse interactions through extensible methods like `add_tool` and `add_function`. The quality of code is commendable, featuring a well-structured modular design that promotes readability and maintainability, although some areas require further documentation and refinement, such as clarifying variable names and enhancing comments. The organization into separate files for models, utilities, and tests aids development, but the utility functions could benefit from better categorization for improved clarity.

もちろん、結果の有用性は、エンジンに接続する MCP サーバーに依存します。

ヘルプとサポートを受ける

ディスカッションセクションを使用してお気軽にご連絡ください。

貢献

詳細については、 「Docling への貢献」をお読みください。

Xでフォローしてください: https://x.com/DARP\_AI

ライセンス

DARPEngine コードベースは MIT ライセンスの下にあります。

-
security - not tested
A
license - permissive license
-
quality - not tested

MCP サーバーのメタデータを保存し、スマート検索機能を提供することで、ユーザーはクエリに適した MCP サーバーを見つけて、リクエストを最も適切なサーバーにルーティングできます。

  1. Features
    1. Coming soon
  2. Installation
    1. Getting started
      1. Direct CLI use
    2. Get help and support
      1. Contributing
        1. License
          ID: z967jno1vt