Motor DARP
El motor de búsqueda MCP para DARP.
DARPEngine almacena metadatos para servidores MCP alojados en línea y proporciona capacidades de búsqueda inteligente.
Características
- CLI simple
- Acceso API para búsqueda
- Herramienta MCP para recuperar resultados de búsqueda para conectarse manualmente
- Herramienta de enrutamiento MCP basada en el servidor: responde cualquier pregunta utilizando las herramientas encontradas para la solicitud del usuario
Muy pronto
- Soporte para
.well-known/mcp.json
- Tractor
- Bonita interfaz
- Versión alojada
- Valide diferentes niveles de certificados SSL e integre esta información de forma inteligente para que los servidores MCP sensibles sean difíciles de falsificar
Instalación
export OPENAI_API_KEY=sk-...
docker network create highkey_network
docker compose build
docker compose -f docker-compose.yaml -f docker-compose-debug.yaml up --build --wait
Empezando
Puede conectar DARPEngine a un cliente MCP (por ejemplo, Claude Desktop o Cursor) mediante las herramientas MCP proporcionadas. Simplemente seleccione el modo SSE y especifique http://localhost:4689/sse
como punto final.
Uso directo de CLI
Otra forma es usar la CLI. La mayoría de los scripts funcionan solo con bibliotecas estándar de Python, pero la herramienta de enrutamiento requiere el paquete mcp. Puedes instalar los requisitos del script de esta manera:
conda create -n darp 'python>=3.10'
conda activate darp
pip install -r mcp_server/requirements.txt
Una vez finalizada la instalación podremos utilizar los scripts.
Para empezar necesitamos agregar algunos servidores MCP al motor, por ejemplo:
$ python scripts/darp-add.py --url http://memelabs.ai:3006/sse --name code_analysis --description "Analyze gitlab repo for quality, topics, packages use"
Luego podremos realizar las peticiones:
$ python scripts/darp-search.py "Analyze https://github.com/BenderV/autochat"
Found 1 servers:
code_analysis
Puede obtener resultados más útiles con la herramienta de enrutamiento:
$ python scripts/darp-router.py "Analyze https://github.com/BenderV/autochat"
assistant: [tool_calls]
[tool] ...
[tool] ...
[tool] ...
assistant:
### Code Quality
The code in the AutoChat repository demonstrates a good level of quality concerning **readability**, **maintainability**, and adherence to best practices:
- **Readability**: Consistent naming conventions are evident, with adherence to Python's PEP 8 styling guidelines. Descriptive function and variable names enhance the understanding of the code's purpose.
- **Maintainability**: The code is structured to allow easy updates and modifications, with a clear separation of concerns observed through the use of classes and methods handling distinct functionalities.
- **Best Practices**: Extensive use of exception handling, type annotations, and docstrings reflect best practices in Python development. Some TODO comments suggest areas for improvement, indicating that further attention is needed.
### Code Structure
The code is organized into multiple files and modules, each serving a distinct purpose:
- **Modular Design**: Various classes (e.g., `Autochat`, `Image`, `Message`) indicate a well-structured object-oriented design that promotes separation of concerns, making the code easier to navigate.
- **Logical Organization**: Files are logically separated based on functionality. For example, `chat.py` focuses on chat-related logic, while `model.py` handles message and image processing. The utility functions in `utils.py` enhance reusability.
- **Testing**: The presence of a test file (`tests/test_utils.py`) shows commitment to testing, crucial for code reliability. The use of `unittest` indicates a structured approach to testing individual components.
### Main Functionality
The code appears to be part of an **AutoChat package**, providing a framework for building conversational agents. Key functionalities include:
- **Chat Management**: The `Autochat` class acts as the main interface for managing conversations, handling message history, context, and interaction limits.
- **Message Handling**: Classes like `Message` and `MessagePart` enable structured message creation and processing, accommodating different message types, including text and images.
- **Functionality Extensions**: Methods like `add_tool` and `add_function` allow dynamic addition of tools and functions, facilitating customization of the chat experience.
- **Provider Integration**: Different API provider integrations (e.g., OpenAI, Anthropic) are encapsulated within respective classes, allowing flexibility in backend communication.
- **Utilities**: Utility functions offer additional capabilities such as CSV formatting and function parsing that support main chat operations.
Overall, the codebase is well-organized and showcases a thoughtful approach to developing a conversational AI framework. There is room for further refinement and enhancement, particularly in documentation and clarity of variable names.
### Library Usage
The project makes use of **AI libraries**, indicated by its functionality related to conversational agents and integration with AI service providers. This supports its ability to manage interactions with AI models efficiently.
### Summary
The AutoChat project is a chat system designed for communication with various AI models, primarily through the `Autochat` class, which manages conversations and supports complex message types, including text and images. The code is moderately complex due to its integration with external APIs and its ability to handle diverse interactions through extensible methods like `add_tool` and `add_function`. The quality of code is commendable, featuring a well-structured modular design that promotes readability and maintainability, although some areas require further documentation and refinement, such as clarifying variable names and enhancing comments. The organization into separate files for models, utilities, and tests aids development, but the utility functions could benefit from better categorization for improved clarity.
Por supuesto, la utilidad del resultado depende de los servidores MCP que conecte al motor.
Obtenga ayuda y soporte
No dudes en conectarte con nosotros utilizando la sección de discusión .
Contribuyendo
Lea Contribuir a Docling para obtener más detalles.
Síguenos en X: https://x.com/DARP\_AI
Licencia
El código base de DARPEngine está bajo licencia MIT.