Skip to main content
Glama

Physics MCP Server

by BlinkZer0
Tensor.md2.38 kB
--- title: Tensor Tool kind: reference header_svg: src: "/assets/svg/tool-tensor-hero.svg" static: "/assets/svg/tool-tensor-hero-static.svg" title: "Tensor Tool" animate: true theme_variant: "auto" reduced_motion: "auto" --- {% assign header_svg = page.header_svg %} {% include header-svg.html %} # Tensor Tool - Name: `tensor_algebra` - Description: Compute Christoffel symbols, curvature tensors, and geodesics - Package: `packages/tools-tensor/` ## Input Schema ```json { "type": "object", "properties": { "metric": { "description": "Metric tensor components as nested array in chosen coordinates", "type": "array", "items": { "type": "array", "items": { "anyOf": [{ "type": "number" }, { "type": "string" }] } } }, "coords": { "description": "Coordinate names (e.g., ['t','r','theta','phi'])", "type": "array", "items": { "type": "string" } }, "compute": { "description": "Quantities to compute", "type": "array", "items": { "type": "string", "enum": ["christoffel", "riemann", "ricci", "ricci_scalar", "geodesics"] } } }, "required": ["metric", "coords", "compute"] } ``` ## Behavior - Computes Christoffel symbols using the formula: Γ^k_{ij} = (1/2) g^{kl} (∂g_{il}/∂x^j + ∂g_{jl}/∂x^i - ∂g_{ij}/∂x^l) - Returns symbolic expressions and LaTeX representations - Riemann, Ricci tensors, and geodesics return partial implementations with guidance for full computation ## Example Requests ### 2D Polar Coordinates ```json { "jsonrpc": "2.0", "id": "tensor-1", "method": "tensor_algebra", "params": { "metric": [["1", "0"], ["0", "r**2"]], "coords": ["r", "theta"], "compute": ["christoffel"] } } ``` ### Schwarzschild Metric ```json { "jsonrpc": "2.0", "id": "tensor-2", "method": "tensor_algebra", "params": { "metric": [ ["-(1-2*M/r)", "0", "0", "0"], ["0", "1/(1-2*M/r)", "0", "0"], ["0", "0", "r**2", "0"], ["0", "0", "0", "r**2*sin(theta)**2"] ], "coords": ["t", "r", "theta", "phi"], "compute": ["christoffel", "geodesics"] } } ``` ## Notes - Uses SymPy for symbolic computation with safe parsing - Full Riemann tensor computation requires sympy.diffgeom for production use - Geodesic equations are provided symbolically; numerical integration requires initial conditions

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/BlinkZer0/Phys-MCP'

If you have feedback or need assistance with the MCP directory API, please join our Discord server