Distributed.md•8.38 kB
---
title: Distributed Computing & Collaboration Tools
kind: reference
header_svg:
src: "/assets/svg/tool-distributed-hero.svg"
static: "/assets/svg/tool-distributed-hero-static.svg"
title: "Distributed Computing & Collaboration Tools"
animate: true
theme_variant: "auto"
reduced_motion: "auto"
---
{% assign header_svg = page.header_svg %}
{% include header-svg.html %}
# Distributed Computing & Collaboration Tools
The Distributed Computing tool enables collaborative physics research and education by providing remote job submission, session sharing, lab notebook capabilities, and artifact versioning with full provenance tracking.
## Core Capabilities
### Remote Job Submission
- **Slurm Integration**: Submit jobs to HPC clusters
- **Kubernetes Support**: Run jobs on cloud computing platforms
- **Job Monitoring**: Real-time status updates and log streaming
- **Artifact Retrieval**: Automatic download of results and outputs
### Session Sharing
- **Multi-User Access**: Share analysis sessions with collaborators
- **Role Management**: Control read/write permissions
- **Expiring Links**: Time-limited access for security
- **Real-time Collaboration**: Multiple users working simultaneously
### Lab Notebook
- **Signed Entries**: Cryptographically signed notebook entries
- **Tool Provenance**: Track which tools were used for each result
- **Artifact Thumbnails**: Visual previews of generated content
- **Version Control**: Complete history of all changes
### Artifact Versioning
- **Content Addressing**: SHA-256 hashes for all artifacts
- **Lineage Tracking**: Complete dependency chains
- **Git Integration**: Version control for all generated content
- **Reproducibility**: Recreate any previous state exactly
## Usage Examples
### Submit Remote Job
```json
{
"tool": "distributed_collaboration",
"params": {
"action": "job_submit",
"job_type": "slurm",
"script": "#!/bin/bash\n#SBATCH --job-name=physics_analysis\npython analyze_data.py",
"resources": {
"nodes": 2,
"cpus_per_node": 16,
"memory": "32GB",
"time": "2:00:00"
},
"artifacts": ["input_data.csv", "analysis_script.py"]
}
}
```
### Share Analysis Session
```json
{
"tool": "distributed_collaboration",
"params": {
"action": "session_share",
"session_id": "physics_lab_2024",
"participants": [
{
"email": "student@university.edu",
"role": "read_write"
},
{
"email": "professor@university.edu",
"role": "admin"
}
],
"expires": "2024-12-31T23:59:59Z"
}
}
```
### Create Lab Notebook Entry
```json
{
"tool": "distributed_collaboration",
"params": {
"action": "lab_notebook",
"entry": {
"title": "Quantum Oscillator Analysis",
"content": "Analyzed the energy levels of a quantum harmonic oscillator",
"tools_used": ["cas", "plot", "quantum"],
"artifacts": ["energy_levels.png", "wavefunctions.svg"],
"conclusions": "Energy levels follow E_n = (n + 1/2)ℏω"
},
"signature": "professor_digital_signature"
}
}
```
### Version Artifacts
```json
{
"tool": "distributed_collaboration",
"params": {
"action": "artifact_versioning",
"artifact_path": "results/analysis_2024_01_15.png",
"metadata": {
"experiment": "quantum_oscillator",
"parameters": {"mass": 1.0, "frequency": 2.0},
"tools_used": ["plot", "quantum"],
"commit_hash": "abc123def456"
},
"lineage": ["raw_data.csv", "processed_data.h5"]
}
}
```
## Educational Applications
### Collaborative Learning
- **Group Projects**: Students can work together on complex analyses
- **Peer Review**: Students can review and comment on each other's work
- **Mentor Access**: Professors can guide students in real-time
- **Knowledge Sharing**: Best practices and solutions shared across the class
### Research Collaboration
- **Multi-Institution**: Researchers from different universities can collaborate
- **Data Sharing**: Secure sharing of experimental data and results
- **Reproducibility**: All analyses can be exactly reproduced by others
- **Publication Support**: Complete provenance for published results
### Remote Learning
- **Virtual Labs**: Students can access powerful computing resources remotely
- **Asynchronous Work**: Students can work on analyses at their own pace
- **Resource Sharing**: Efficient use of institutional computing resources
- **Accessibility**: Equal access to computing resources for all students
## Advanced Features
### Job Orchestration
```json
{
"tool": "distributed_collaboration",
"params": {
"action": "job_submit",
"workflow": [
{
"step": "data_preprocessing",
"script": "preprocess.py",
"dependencies": ["raw_data.csv"]
},
{
"step": "analysis",
"script": "analyze.py",
"dependencies": ["preprocessed_data.h5"]
},
{
"step": "visualization",
"script": "plot_results.py",
"dependencies": ["analysis_results.json"]
}
]
}
}
```
### Real-time Collaboration
```json
{
"tool": "distributed_collaboration",
"params": {
"action": "session_share",
"real_time": true,
"features": {
"live_cursor": true,
"voice_chat": true,
"screen_sharing": true
}
}
}
```
### Automated Backup
```json
{
"tool": "distributed_collaboration",
"params": {
"action": "artifact_versioning",
"auto_backup": true,
"backup_schedule": "daily",
"retention_policy": "30_days"
}
}
```
## Security and Privacy
### Access Control
- **Authentication**: Multi-factor authentication support
- **Authorization**: Role-based access control
- **Audit Logs**: Complete record of all access and changes
- **Encryption**: All data encrypted in transit and at rest
### Data Protection
- **Privacy**: Sensitive data can be kept private
- **Compliance**: Meet institutional and regulatory requirements
- **Backup**: Automated backup and disaster recovery
- **Version Control**: Complete history of all changes
## Integration with Other Tools
### Complete Research Workflow
```json
{
"tool": "experiment_orchestrator",
"params": {
"dag": [
{
"tool": "distributed_collaboration",
"action": "job_submit",
"script": "collect_data.py"
},
{
"tool": "data",
"action": "import_hdf5",
"file": "collected_data.h5"
},
{
"tool": "ml_ai_augmentation",
"action": "symbolic_regression_train"
},
{
"tool": "distributed_collaboration",
"action": "artifact_versioning",
"results": "from_previous_step"
}
]
}
}
```
### Publication Pipeline
```json
{
"tool": "export_tool",
"params": {
"export_type": "overleaf",
"artifacts": "from_distributed_collaboration",
"provenance": "included"
}
}
```
## Performance Considerations
### Resource Management
- **Queue Management**: Intelligent job queuing and scheduling
- **Load Balancing**: Distribute work across available resources
- **Resource Monitoring**: Real-time monitoring of system resources
- **Cost Optimization**: Minimize compute costs while meeting deadlines
### Network Optimization
- **Data Compression**: Compress large datasets for transfer
- **Incremental Sync**: Only transfer changed data
- **CDN Integration**: Use content delivery networks for global access
- **Bandwidth Management**: Throttle transfers to avoid network congestion
## Best Practices
### Collaboration
- **Clear Communication**: Document all changes and decisions
- **Regular Backups**: Ensure important work is always backed up
- **Version Control**: Use meaningful commit messages
- **Access Management**: Regularly review and update access permissions
### Resource Usage
- **Efficient Scripts**: Write efficient code to minimize resource usage
- **Resource Requests**: Request appropriate resources for your jobs
- **Cleanup**: Clean up temporary files and unused resources
- **Monitoring**: Monitor job progress and resource usage
### Security
- **Strong Authentication**: Use strong passwords and multi-factor authentication
- **Regular Updates**: Keep software and systems up to date
- **Access Reviews**: Regularly review who has access to what
- **Incident Response**: Have a plan for handling security incidents