ML.md•7.26 kB
---
title: Machine Learning & AI Augmentation Tools
kind: reference
header_svg:
src: "/assets/svg/tool-ml-hero.svg"
static: "/assets/svg/tool-ml-hero-static.svg"
title: "Machine Learning & AI Augmentation Tools"
animate: true
theme_variant: "auto"
reduced_motion: "auto"
---
{% assign header_svg = page.header_svg %}
{% include header-svg.html %}
# Machine Learning & AI Augmentation Tools
The ML & AI Augmentation tool provides advanced machine learning capabilities specifically designed for physics applications, including symbolic regression, physics-informed neural networks, and scientific pattern recognition.
## Core Capabilities
### Symbolic Regression
- **PySR Integration**: Genetic programming for equation discovery
- **Physics-Informed**: Incorporates physical constraints and units
- **Interpretable Models**: Human-readable mathematical expressions
- **Uncertainty Quantification**: Error bars and confidence intervals
### Physics-Informed Neural Networks (PINNs)
- **PDE Solving**: Solve partial differential equations with neural networks
- **Boundary Conditions**: Enforce physical constraints automatically
- **Multi-Physics**: Handle coupled physics problems
- **Real-time Simulation**: Fast inference for interactive applications
### Scientific Pattern Recognition
- **Image Analysis**: Detect features in scientific images
- **Signal Processing**: Identify patterns in time-series data
- **Classification**: Categorize experimental results
- **Anomaly Detection**: Find unusual patterns in data
### Derivation Explanation
- **Mathematical Proofs**: Generate step-by-step derivations
- **LaTeX Output**: Professional mathematical formatting
- **Interactive Explanations**: Guided problem-solving
- **Educational Content**: Student-friendly explanations
## Usage Examples
### Symbolic Regression
```json
{
"tool": "ml_ai_augmentation",
"params": {
"action": "symbolic_regression_train",
"data_x": [1, 2, 3, 4, 5],
"data_y": [1, 4, 9, 16, 25],
"target_complexity": 10,
"max_iterations": 1000
}
}
```
### Physics-Informed Neural Network
```json
{
"tool": "ml_ai_augmentation",
"params": {
"action": "surrogate_pde_train",
"pde_type": "heat_equation",
"boundary_conditions": {
"initial": "sin(x)",
"boundary": "0"
},
"training_points": 1000,
"epochs": 1000
}
}
```
### Pattern Recognition
```json
{
"tool": "ml_ai_augmentation",
"params": {
"action": "pattern_recognition_infer",
"image_data": "base64_encoded_image",
"task": "detection",
"model_type": "yolo",
"confidence_threshold": 0.7
}
}
```
### Derivation Explanation
```json
{
"tool": "ml_ai_augmentation",
"params": {
"action": "explain_derivation",
"problem": "Derive the time-independent Schrödinger equation",
"level": "undergraduate",
"include_steps": true
}
}
```
## Educational Applications
### Equation Discovery
- **Student Data**: Let students discover physical laws from their own data
- **Historical Context**: Show how famous equations were discovered
- **Parameter Estimation**: Find unknown constants in physical models
- **Model Validation**: Test theoretical predictions against data
### Interactive Learning
- **Real-time Fitting**: Instant parameter estimation during experiments
- **Visual Feedback**: See how models fit data in real-time
- **Error Analysis**: Understand uncertainty in measurements
- **Hypothesis Testing**: Test student predictions against data
### Research Applications
- **Data Mining**: Find hidden patterns in large datasets
- **Model Selection**: Choose best physical models for data
- **Parameter Optimization**: Fine-tune theoretical models
- **Prediction**: Forecast future behavior of physical systems
## Advanced Features
### GPU Acceleration
- **Automatic Detection**: Use GPU when available
- **Memory Management**: Efficient handling of large datasets
- **Batch Processing**: Process multiple problems simultaneously
- **Performance Monitoring**: Real-time performance metrics
### Model Interpretability
- **Feature Importance**: Understand which variables matter most
- **Uncertainty Quantification**: Reliable error estimates
- **Sensitivity Analysis**: How sensitive are results to input changes
- **Physical Constraints**: Ensure models obey physical laws
### Integration with Physics Tools
```json
{
"tool": "ml_ai_augmentation",
"params": {
"action": "symbolic_regression_train",
"data_source": "plot_output",
"physical_constraints": {
"units": "energy",
"symmetries": ["time_reversal"]
}
}
}
```
## Performance Optimization
### Training Efficiency
- **Early Stopping**: Prevent overfitting automatically
- **Learning Rate Scheduling**: Adaptive learning rates
- **Regularization**: Prevent overfitting with physics constraints
- **Parallel Processing**: Use multiple CPU cores when available
### Memory Management
- **Chunked Processing**: Handle datasets larger than memory
- **Lazy Loading**: Load data only when needed
- **Cache Management**: Intelligent caching of intermediate results
- **Garbage Collection**: Automatic cleanup of unused resources
## Error Handling and Validation
### Data Validation
- **Input Checking**: Ensure data is in correct format
- **Range Validation**: Check for reasonable parameter values
- **Unit Consistency**: Verify units are compatible
- **Missing Data**: Handle incomplete datasets gracefully
### Model Validation
- **Cross-Validation**: Test models on unseen data
- **Physical Constraints**: Ensure models obey physical laws
- **Uncertainty Estimation**: Provide reliable error estimates
- **Robustness Testing**: Test models under various conditions
## Integration Examples
### Complete Analysis Pipeline
```json
{
"tool": "experiment_orchestrator",
"params": {
"dag": [
{
"tool": "data",
"action": "import_hdf5",
"file": "experiment_data.h5"
},
{
"tool": "ml_ai_augmentation",
"action": "symbolic_regression_train",
"data": "from_previous_step"
},
{
"tool": "export_tool",
"export_type": "overleaf",
"results": "from_previous_step"
}
]
}
}
```
### Real-time Analysis
```json
{
"tool": "ml_ai_augmentation",
"params": {
"action": "pattern_recognition_infer",
"streaming_data": true,
"real_time": true,
"output_format": "live_plot"
}
}
```
## Best Practices
### Data Preparation
- **Clean Data**: Remove outliers and handle missing values
- **Feature Engineering**: Create meaningful input features
- **Normalization**: Scale data appropriately for training
- **Validation Split**: Reserve data for testing
### Model Selection
- **Start Simple**: Begin with basic models before complex ones
- **Physical Constraints**: Incorporate known physics into models
- **Regularization**: Prevent overfitting with appropriate penalties
- **Cross-Validation**: Use multiple validation sets
### Interpretation
- **Uncertainty**: Always report uncertainty in results
- **Physical Meaning**: Ensure results make physical sense
- **Sensitivity**: Test how sensitive results are to inputs
- **Validation**: Compare with known analytical solutions when possible