Skip to main content
Glama

Gemini MCP Server

xai_models.jsonโ€ข4.15 kB
{ "_README": { "description": "Model metadata for X.AI (GROK) API access.", "documentation": "https://github.com/BeehiveInnovations/zen-mcp-server/blob/main/docs/custom_models.md", "usage": "Models listed here are exposed directly through the X.AI provider. Aliases are case-insensitive.", "field_notes": "Matches providers/shared/model_capabilities.py.", "field_descriptions": { "model_name": "The model identifier (e.g., 'grok-4', 'grok-3-fast')", "aliases": "Array of short names users can type instead of the full model name", "context_window": "Total number of tokens the model can process (input + output combined)", "max_output_tokens": "Maximum number of tokens the model can generate in a single response", "max_thinking_tokens": "Maximum reasoning/thinking tokens the model will allocate when extended thinking is requested", "supports_extended_thinking": "Whether the model supports extended reasoning tokens (currently none do via OpenRouter or custom APIs)", "supports_json_mode": "Whether the model can guarantee valid JSON output", "supports_function_calling": "Whether the model supports function/tool calling", "supports_images": "Whether the model can process images/visual input", "max_image_size_mb": "Maximum total size in MB for all images combined (capped at 40MB max for custom models)", "supports_temperature": "Whether the model accepts temperature parameter in API calls (set to false for O3/O4 reasoning models)", "temperature_constraint": "Type of temperature constraint: 'fixed' (fixed value), 'range' (continuous range), 'discrete' (specific values), or omit for default range", "use_openai_response_api": "Set to true when the model must use the /responses endpoint (reasoning models like GPT-5 Pro). Leave false/omit for standard chat completions.", "default_reasoning_effort": "Default reasoning effort level for models that support it (e.g., 'low', 'medium', 'high'). Omit if not applicable.", "description": "Human-readable description of the model", "intelligence_score": "1-20 human rating used as the primary signal for auto-mode model ordering" } }, "models": [ { "model_name": "grok-4", "friendly_name": "X.AI (Grok 4)", "aliases": [ "grok", "grok4", "grok-4" ], "intelligence_score": 16, "description": "GROK-4 (256K context) - Frontier multimodal reasoning model with advanced capabilities", "context_window": 256000, "max_output_tokens": 256000, "supports_extended_thinking": true, "supports_system_prompts": true, "supports_streaming": true, "supports_function_calling": true, "supports_json_mode": true, "supports_images": true, "supports_temperature": true, "max_image_size_mb": 20.0 }, { "model_name": "grok-3", "friendly_name": "X.AI (Grok 3)", "aliases": [ "grok3" ], "intelligence_score": 13, "description": "GROK-3 (131K context) - Advanced reasoning model from X.AI, excellent for complex analysis", "context_window": 131072, "max_output_tokens": 131072, "supports_extended_thinking": false, "supports_system_prompts": true, "supports_streaming": true, "supports_function_calling": true, "supports_json_mode": false, "supports_images": false, "supports_temperature": true }, { "model_name": "grok-3-fast", "friendly_name": "X.AI (Grok 3 Fast)", "aliases": [ "grok3fast", "grokfast", "grok3-fast" ], "intelligence_score": 12, "description": "GROK-3 Fast (131K context) - Higher performance variant, faster processing but more expensive", "context_window": 131072, "max_output_tokens": 131072, "supports_extended_thinking": false, "supports_system_prompts": true, "supports_streaming": true, "supports_function_calling": true, "supports_json_mode": false, "supports_images": false, "supports_temperature": true } ] }

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/BeehiveInnovations/gemini-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server