Skip to main content
Glama

Gemini MCP Server

azure_models.jsonโ€ข2.84 kB
{ "_README": { "description": "Model metadata for Azure OpenAI / Azure AI Foundry-backed provider. The `models` definition can be copied from openrouter_models.json / custom_models.json", "documentation": "https://github.com/BeehiveInnovations/zen-mcp-server/blob/main/docs/azure_models.md", "usage": "Models listed here are exposed through Azure AI Foundry. Aliases are case-insensitive.", "field_notes": "Matches providers/shared/model_capabilities.py.", "field_descriptions": { "model_name": "The model identifier e.g., 'gpt-4'", "deployment": "Azure model deployment name", "aliases": "Array of short names users can type instead of the full model name", "context_window": "Total number of tokens the model can process (input + output combined)", "max_output_tokens": "Maximum number of tokens the model can generate in a single response", "supports_extended_thinking": "Whether the model supports extended reasoning tokens (currently none do via OpenRouter or custom APIs)", "supports_json_mode": "Whether the model can guarantee valid JSON output", "supports_function_calling": "Whether the model supports function/tool calling", "supports_images": "Whether the model can process images/visual input", "max_image_size_mb": "Maximum total size in MB for all images combined (capped at 40MB max for custom models)", "supports_temperature": "Whether the model accepts temperature parameter in API calls (set to false for O3/O4 reasoning models)", "temperature_constraint": "Type of temperature constraint: 'fixed' (fixed value), 'range' (continuous range), 'discrete' (specific values), or omit for default range", "use_openai_response_api": "Set to true when the deployment must call Azure's /responses endpoint (O-series reasoning models). Leave false/omit for standard chat completions.", "default_reasoning_effort": "Default reasoning effort level for models that support it (e.g., 'low', 'medium', 'high'). Omit if not applicable.", "description": "Human-readable description of the model", "intelligence_score": "1-20 human rating used as the primary signal for auto-mode model ordering" } }, "_example_models": [ { "model_name": "gpt-4", "deployment": "gpt-4", "aliases": [ "gpt4" ], "context_window": 128000, "max_output_tokens": 16384, "supports_extended_thinking": false, "supports_json_mode": true, "supports_function_calling": false, "supports_images": false, "max_image_size_mb": 0.0, "supports_temperature": false, "temperature_constraint": "fixed", "use_openai_response_api": false, "description": "GPT-4 (128K context, 16K output)", "intelligence_score": 10 } ], "models": [] }

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/BeehiveInnovations/gemini-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server