Skip to main content
Glama

Gemini MCP Server

gemini_models.jsonโ€ข5.35 kB
{ "_README": { "description": "Model metadata for Google's Gemini API access.", "documentation": "https://github.com/BeehiveInnovations/zen-mcp-server/blob/main/docs/custom_models.md", "usage": "Models listed here are exposed directly through the Gemini provider. Aliases are case-insensitive.", "field_notes": "Matches providers/shared/model_capabilities.py.", "field_descriptions": { "model_name": "The model identifier (e.g., 'gemini-2.5-pro', 'gemini-2.0-flash')", "aliases": "Array of short names users can type instead of the full model name", "context_window": "Total number of tokens the model can process (input + output combined)", "max_output_tokens": "Maximum number of tokens the model can generate in a single response", "max_thinking_tokens": "Maximum reasoning/thinking tokens the model will allocate when extended thinking is requested", "supports_extended_thinking": "Whether the model supports extended reasoning tokens (currently none do via OpenRouter or custom APIs)", "supports_json_mode": "Whether the model can guarantee valid JSON output", "supports_function_calling": "Whether the model supports function/tool calling", "supports_images": "Whether the model can process images/visual input", "max_image_size_mb": "Maximum total size in MB for all images combined (capped at 40MB max for custom models)", "supports_temperature": "Whether the model accepts temperature parameter in API calls (set to false for O3/O4 reasoning models)", "temperature_constraint": "Type of temperature constraint: 'fixed' (fixed value), 'range' (continuous range), 'discrete' (specific values), or omit for default range", "use_openai_response_api": "Set to true when the model must use the /responses endpoint (reasoning models like GPT-5 Pro). Leave false/omit for standard chat completions.", "default_reasoning_effort": "Default reasoning effort level for models that support it (e.g., 'low', 'medium', 'high'). Omit if not applicable.", "description": "Human-readable description of the model", "intelligence_score": "1-20 human rating used as the primary signal for auto-mode model ordering", "allow_code_generation": "Whether this model can generate and suggest fully working code - complete with functions, files, and detailed implementation instructions - for your AI tool to use right away. Only set this to 'true' for a model more capable than the AI model / CLI you're currently using." } }, "models": [ { "model_name": "gemini-2.5-pro", "friendly_name": "Gemini (Pro 2.5)", "aliases": [ "pro", "gemini pro", "gemini-pro" ], "intelligence_score": 18, "description": "Deep reasoning + thinking mode (1M context) - Complex problems, architecture, deep analysis", "context_window": 1048576, "max_output_tokens": 65536, "max_thinking_tokens": 32768, "supports_extended_thinking": true, "supports_system_prompts": true, "supports_streaming": true, "supports_function_calling": true, "supports_json_mode": true, "supports_images": true, "supports_temperature": true, "allow_code_generation": true, "max_image_size_mb": 32.0 }, { "model_name": "gemini-2.0-flash", "friendly_name": "Gemini (Flash 2.0)", "aliases": [ "flash-2.0", "flash2" ], "intelligence_score": 9, "description": "Gemini 2.0 Flash (1M context) - Latest fast model with experimental thinking, supports audio/video input", "context_window": 1048576, "max_output_tokens": 65536, "max_thinking_tokens": 24576, "supports_extended_thinking": true, "supports_system_prompts": true, "supports_streaming": true, "supports_function_calling": true, "supports_json_mode": true, "supports_images": true, "supports_temperature": true, "max_image_size_mb": 20.0 }, { "model_name": "gemini-2.0-flash-lite", "friendly_name": "Gemini (Flash Lite 2.0)", "aliases": [ "flashlite", "flash-lite" ], "intelligence_score": 7, "description": "Gemini 2.0 Flash Lite (1M context) - Lightweight fast model, text-only", "context_window": 1048576, "max_output_tokens": 65536, "supports_extended_thinking": false, "supports_system_prompts": true, "supports_streaming": true, "supports_function_calling": true, "supports_json_mode": true, "supports_images": false, "supports_temperature": true }, { "model_name": "gemini-2.5-flash", "friendly_name": "Gemini (Flash 2.5)", "aliases": [ "flash", "flash2.5" ], "intelligence_score": 10, "description": "Ultra-fast (1M context) - Quick analysis, simple queries, rapid iterations", "context_window": 1048576, "max_output_tokens": 65536, "max_thinking_tokens": 24576, "supports_extended_thinking": true, "supports_system_prompts": true, "supports_streaming": true, "supports_function_calling": true, "supports_json_mode": true, "supports_images": true, "supports_temperature": true, "max_image_size_mb": 20.0 } ] }

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/BeehiveInnovations/gemini-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server