Skip to main content
Glama

LW MCP Agents

by Autumn-AIs
README.md6.09 kB
# 🚀 LW MCP Agents **LW MCP Agents** is a lightweight, modular framework for building and orchestrating AI agents using the **Model Context Protocol (MCP)**. It empowers you to rapidly design multi-agent systems where each agent can specialize, collaborate, delegate, and reason—without writing complex orchestration logic. > **Build scalable, composable AI systems using only configuration files.** --- ## 🔍 Why Use LW MCP Agents? - ✅ **Plug-and-Play Agents**: Launch intelligent agents with zero boilerplate using simple JSON configs. - ✅ **Multi-Agent Orchestration**: Chain agents together to solve complex tasks—no extra code required. - ✅ **Share & Reuse**: Distribute and run agent configurations across environments effortlessly. - ✅ **MCP-Native**: Seamlessly integrates with any MCP-compatible platform, including Claude Desktop. --- ## 🧠 What Can You Build? - Research agents that summarize documents or search the web - Orchestrators that delegate tasks to domain-specific agents - Systems that scale reasoning recursively and aggregate capabilities dynamically --- ## 🏗️ Architecture at a Glance ![LW-MCP-agents-diagram](https://github.com/user-attachments/assets/9a69e2da-403e-40e3-9f6f-4cf484dc7444) --- ## 📚 Table of Contents - [Getting Started](#getting-started) - [Example Agents](#example-agents) - [Running Agents](#running-agents) - [Custom Agent Creation](#custom-agent-creation) - [How It Works](#how-it-works) - [Technical Architecture](#technical-architecture) - [Acknowledgements](#acknowledgements) --- ## 🚀 Getting Started ### 🔧 Installation ```bash git clone https://github.com/Autumn-AIs/LW-MCP-agents.git cd LW-MCP-agents python -m venv venv source venv/bin/activate # Windows: venv\Scripts\activate pip install -r requirements.txt ``` ### ▶️ Run Your First Agent ```bash python src/agent/agent_runner.py --config examples/base_agent/base_agent_config.json ``` ### 🤖 Try a Multi-Agent Setup **Terminal 1 (Research Agent Server):** ```bash python src/agent/agent_runner.py --config examples/orchestrator_researcher/research_agent_config.json --server-mode ``` **Terminal 2 (Orchestrator Agent):** ```bash python src/agent/agent_runner.py --config examples/orchestrator_researcher/master_orchestrator_config.json ``` Your orchestrator now intelligently delegates research tasks to the research agent. --- ### 🖥️ Claude Desktop Integration Configure agents to run inside **Claude Desktop**: **1. Locate your Claude config file:** - macOS: `~/Library/Application Support/Claude/claude_desktop_config.json` - Windows: `%APPDATA%\Claude\claude_desktop_config.json` - Linux: `~/.config/Claude/claude_desktop_config.json` **2. Add your agent under `mcpServers`:** ```json { "mcpServers": { "research-agent": { "command": "/bin/bash", "args": ["-c", "/path/to/venv/bin/python /path/to/agent_runner.py --config=/path/to/agent_config.json --server-mode"], "env": { "PYTHONPATH": "/path/to/project", "PATH": "/path/to/venv/bin:/usr/local/bin:/usr/bin" } } } } ``` --- ## 📦 Example Agents - **Base Agent** A minimal agent that connects to tools via MCP. 📁 `examples/base_agent/` - **Orchestrator + Researcher** Demonstrates hierarchical delegation and capability sharing. 📁 `examples/orchestrator_researcher/` 💡 **Contribute your own example!** Submit a PR or reach out to the maintainers. --- ## ⚙️ Running Agents ### 🔹 Basic Command ```bash python src/agent/agent_runner.py --config <your_config.json> ``` ### 🔸 Advanced Options | Option | Description | |--------|-------------| | `--server-mode` | Exposes the agent as an MCP server | | `--server-name` | Assigns a custom MCP server name | --- ## 🛠️ Custom Agent Creation ### 🧱 Minimal Config ```json { "agent_name": "my-agent", "llm_provider": "groq", "llm_api_key": "YOUR_API_KEY", "server_mode": false } ``` ### 🧠 Adding Capabilities Define specialized functions the agent can reason over: ```json "capabilities": [ { "name": "summarize_document", "description": "Summarize a document in a concise way", "input_schema": { "type": "object", "properties": { "document_text": { "type": "string" }, "max_length": { "type": "integer", "default": 200 } }, "required": ["document_text"] }, "prompt_template": "Summarize the following document in {max_length} words:\n\n{document_text}" } ] ``` ### 🔄 Orchestrator Agent ```json { "agent_name": "master-orchestrator", "servers": { "research-agent": { "command": "python", "args": ["src/agent/agent_runner.py", "--config=research_agent_config.json", "--server-mode"] } } } ``` --- ## 🧬 How It Works ### 🧩 Capabilities as Reasoning Units Each capability: 1. Fills in a prompt using provided arguments 2. Executes internal reasoning using LLMs 3. Uses tools or external agents 4. Returns the result ### 📖 Research Example ``` [INFO] agent:master-orchestrator - Executing tool: research_topic [INFO] agent:research-agent - Using tool: brave_web_search [INFO] agent:research-agent - Finished capability: research_topic ``` --- ## 🧱 Technical Architecture ### 🧠 Key Components | Component | Role | |----------|------| | `AgentServer` | Starts, configures, and runs an agent | | `MCPServerWrapper` | Wraps the agent to expose it over MCP | | `CapabilityRegistry` | Loads reasoning tasks from config | | `ToolRegistry` | Discovers tools from other agents | ### 🌐 Architecture Highlights - **Hierarchical Design**: Compose systems of agents with recursive reasoning - **Delegated Capabilities**: Agents delegate intelligently to peers - **Tool Sharing**: Tools available in one agent become accessible to others - **Code-Free Composition**: Create entire systems via configuration --- ## 🙌 Acknowledgements This project draws inspiration from the brilliant work on [mcp-agents](https://github.com/lastmile-ai/mcp-agent) by LastMile AI.

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Autumn-AIs/LW-MCP-agents'

If you have feedback or need assistance with the MCP directory API, please join our Discord server