Skip to main content
Glama

LW MCP Agents

by Autumn-AIs

🚀 LW MCP Agents

LW MCP Agents is a lightweight, modular framework for building and orchestrating AI agents using the Model Context Protocol (MCP). It empowers you to rapidly design multi-agent systems where each agent can specialize, collaborate, delegate, and reason—without writing complex orchestration logic.

Build scalable, composable AI systems using only configuration files.


🔍 Why Use LW MCP Agents?

  • Plug-and-Play Agents: Launch intelligent agents with zero boilerplate using simple JSON configs.
  • Multi-Agent Orchestration: Chain agents together to solve complex tasks—no extra code required.
  • Share & Reuse: Distribute and run agent configurations across environments effortlessly.
  • MCP-Native: Seamlessly integrates with any MCP-compatible platform, including Claude Desktop.

🧠 What Can You Build?

  • Research agents that summarize documents or search the web
  • Orchestrators that delegate tasks to domain-specific agents
  • Systems that scale reasoning recursively and aggregate capabilities dynamically

🏗️ Architecture at a Glance

LW-MCP-agents-diagram


📚 Table of Contents


🚀 Getting Started

🔧 Installation

git clone https://github.com/Autumn-AIs/LW-MCP-agents.git cd LW-MCP-agents python -m venv venv source venv/bin/activate # Windows: venv\Scripts\activate pip install -r requirements.txt

▶️ Run Your First Agent

python src/agent/agent_runner.py --config examples/base_agent/base_agent_config.json

🤖 Try a Multi-Agent Setup

Terminal 1 (Research Agent Server):

python src/agent/agent_runner.py --config examples/orchestrator_researcher/research_agent_config.json --server-mode

Terminal 2 (Orchestrator Agent):

python src/agent/agent_runner.py --config examples/orchestrator_researcher/master_orchestrator_config.json

Your orchestrator now intelligently delegates research tasks to the research agent.


🖥️ Claude Desktop Integration

Configure agents to run inside Claude Desktop:

1. Locate your Claude config file:

  • macOS: ~/Library/Application Support/Claude/claude_desktop_config.json
  • Windows: %APPDATA%\Claude\claude_desktop_config.json
  • Linux: ~/.config/Claude/claude_desktop_config.json

2. Add your agent under mcpServers:

{ "mcpServers": { "research-agent": { "command": "/bin/bash", "args": ["-c", "/path/to/venv/bin/python /path/to/agent_runner.py --config=/path/to/agent_config.json --server-mode"], "env": { "PYTHONPATH": "/path/to/project", "PATH": "/path/to/venv/bin:/usr/local/bin:/usr/bin" } } } }

📦 Example Agents

  • Base Agent
    A minimal agent that connects to tools via MCP.
    📁 examples/base_agent/
  • Orchestrator + Researcher
    Demonstrates hierarchical delegation and capability sharing.
    📁 examples/orchestrator_researcher/

💡 Contribute your own example! Submit a PR or reach out to the maintainers.


⚙️ Running Agents

🔹 Basic Command

python src/agent/agent_runner.py --config <your_config.json>

🔸 Advanced Options

OptionDescription
--server-modeExposes the agent as an MCP server
--server-nameAssigns a custom MCP server name

🛠️ Custom Agent Creation

🧱 Minimal Config

{ "agent_name": "my-agent", "llm_provider": "groq", "llm_api_key": "YOUR_API_KEY", "server_mode": false }

🧠 Adding Capabilities

Define specialized functions the agent can reason over:

"capabilities": [ { "name": "summarize_document", "description": "Summarize a document in a concise way", "input_schema": { "type": "object", "properties": { "document_text": { "type": "string" }, "max_length": { "type": "integer", "default": 200 } }, "required": ["document_text"] }, "prompt_template": "Summarize the following document in {max_length} words:\n\n{document_text}" } ]

🔄 Orchestrator Agent

{ "agent_name": "master-orchestrator", "servers": { "research-agent": { "command": "python", "args": ["src/agent/agent_runner.py", "--config=research_agent_config.json", "--server-mode"] } } }

🧬 How It Works

🧩 Capabilities as Reasoning Units

Each capability:

  1. Fills in a prompt using provided arguments
  2. Executes internal reasoning using LLMs
  3. Uses tools or external agents
  4. Returns the result

📖 Research Example

[INFO] agent:master-orchestrator - Executing tool: research_topic [INFO] agent:research-agent - Using tool: brave_web_search [INFO] agent:research-agent - Finished capability: research_topic

🧱 Technical Architecture

🧠 Key Components

ComponentRole
AgentServerStarts, configures, and runs an agent
MCPServerWrapperWraps the agent to expose it over MCP
CapabilityRegistryLoads reasoning tasks from config
ToolRegistryDiscovers tools from other agents

🌐 Architecture Highlights

  • Hierarchical Design: Compose systems of agents with recursive reasoning
  • Delegated Capabilities: Agents delegate intelligently to peers
  • Tool Sharing: Tools available in one agent become accessible to others
  • Code-Free Composition: Create entire systems via configuration

🙌 Acknowledgements

This project draws inspiration from the brilliant work on mcp-agents by LastMile AI.

-
security - not tested
A
license - permissive license
-
quality - not tested

remote-capable server

The server can be hosted and run remotely because it primarily relies on remote services or has no dependency on the local environment.

모델 컨텍스트 프로토콜을 통해 AI 에이전트를 구축하고 조율하기 위한 가벼운 프레임워크로, 사용자는 구성 파일만을 사용하여 확장 가능한 다중 에이전트 시스템을 생성할 수 있습니다.

  1. 🔍 LW MCP 에이전트를 사용해야 하는 이유는 무엇입니까?
    1. 🧠 무엇을 만들 수 있나요?
      1. 🏗️ 한눈에 보는 건축
        1. 📚 목차
          1. 🚀 시작하기
            1. 🔧 설치
            2. ▶️ 첫 번째 에이전트 실행
            3. 🤖 다중 에이전트 설정을 시도해 보세요
            4. 🖥️ Claude 데스크톱 통합
          2. 📦 예시 에이전트
            1. ⚙️ 러닝 에이전트
              1. 🔹 기본 명령
              2. 🔸 고급 옵션
            2. 🛠️ 맞춤형 에이전트 생성
              1. 🧱 최소 구성
              2. 🧠 기능 추가
              3. 🔄 오케스트레이터 에이전트
            3. 🧬 작동 원리
              1. 🧩 추론 단위로서의 역량
              2. 📖 연구 예시
            4. 🧱 기술 아키텍처
              1. 🧠 주요 구성 요소
              2. 🌐 건축 하이라이트
            5. 🙌 감사의 말

              Related MCP Servers

              • -
                security
                A
                license
                -
                quality
                A FastAPI-based implementation of the Model Context Protocol that enables standardized interaction between AI models and development environments, making it easier for developers to integrate and manage AI tasks.
                Last updated -
                10
                MIT License
              • A
                security
                F
                license
                A
                quality
                A Model Context Protocol server that enables AI agents to generate, fetch, and manage UI components through natural language interactions.
                Last updated -
                3
                57
                5
              • -
                security
                A
                license
                -
                quality
                An open-source implementation of the Model Context Protocol (MCP) that bridges AI agents with enterprise systems, enabling secure access to real-world data and capabilities.
                Last updated -
                2
                Apache 2.0
              • -
                security
                A
                license
                -
                quality
                A Model Context Protocol server that enhances AI agents by providing deep semantic understanding of codebases, enabling more intelligent interactions through advanced code search and contextual awareness.
                Last updated -
                51
                MIT License
                • Apple

              View all related MCP servers

              MCP directory API

              We provide all the information about MCP servers via our MCP API.

              curl -X GET 'https://glama.ai/api/mcp/v1/servers/Autumn-AIs/LW-MCP-agents'

              If you have feedback or need assistance with the MCP directory API, please join our Discord server