Skip to main content
Glama

๐Ÿš€ LW MCP Agents

LW MCP Agents is a lightweight, modular framework for building and orchestrating AI agents using the Model Context Protocol (MCP). It empowers you to rapidly design multi-agent systems where each agent can specialize, collaborate, delegate, and reasonโ€”without writing complex orchestration logic.

Build scalable, composable AI systems using only configuration files.


๐Ÿ” Why Use LW MCP Agents?

  • โœ… Plug-and-Play Agents: Launch intelligent agents with zero boilerplate using simple JSON configs.

  • โœ… Multi-Agent Orchestration: Chain agents together to solve complex tasksโ€”no extra code required.

  • โœ… Share & Reuse: Distribute and run agent configurations across environments effortlessly.

  • โœ… MCP-Native: Seamlessly integrates with any MCP-compatible platform, including Claude Desktop.


Related MCP server: SupaUI MCP Server

๐Ÿง  What Can You Build?

  • Research agents that summarize documents or search the web

  • Orchestrators that delegate tasks to domain-specific agents

  • Systems that scale reasoning recursively and aggregate capabilities dynamically


๐Ÿ—๏ธ Architecture at a Glance

LW-MCP-agents-diagram


๐Ÿ“š Table of Contents


๐Ÿš€ Getting Started

๐Ÿ”ง Installation

git clone https://github.com/Autumn-AIs/LW-MCP-agents.git cd LW-MCP-agents python -m venv venv source venv/bin/activate # Windows: venv\Scripts\activate pip install -r requirements.txt

โ–ถ๏ธ Run Your First Agent

python src/agent/agent_runner.py --config examples/base_agent/base_agent_config.json

๐Ÿค– Try a Multi-Agent Setup

Terminal 1 (Research Agent Server):

python src/agent/agent_runner.py --config examples/orchestrator_researcher/research_agent_config.json --server-mode

Terminal 2 (Orchestrator Agent):

python src/agent/agent_runner.py --config examples/orchestrator_researcher/master_orchestrator_config.json

Your orchestrator now intelligently delegates research tasks to the research agent.


๐Ÿ–ฅ๏ธ Claude Desktop Integration

Configure agents to run inside Claude Desktop:

1. Locate your Claude config file:

  • macOS: ~/Library/Application Support/Claude/claude_desktop_config.json

  • Windows: %APPDATA%\Claude\claude_desktop_config.json

  • Linux: ~/.config/Claude/claude_desktop_config.json

2. Add your agent under

{ "mcpServers": { "research-agent": { "command": "/bin/bash", "args": ["-c", "/path/to/venv/bin/python /path/to/agent_runner.py --config=/path/to/agent_config.json --server-mode"], "env": { "PYTHONPATH": "/path/to/project", "PATH": "/path/to/venv/bin:/usr/local/bin:/usr/bin" } } } }

๐Ÿ“ฆ Example Agents

  • Base Agent
    A minimal agent that connects to tools via MCP.
    ๐Ÿ“ examples/base_agent/

  • Orchestrator + Researcher
    Demonstrates hierarchical delegation and capability sharing.
    ๐Ÿ“ examples/orchestrator_researcher/

๐Ÿ’ก Contribute your own example! Submit a PR or reach out to the maintainers.


โš™๏ธ Running Agents

๐Ÿ”น Basic Command

python src/agent/agent_runner.py --config <your_config.json>

๐Ÿ”ธ Advanced Options

Option

Description

--server-mode

Exposes the agent as an MCP server

--server-name

Assigns a custom MCP server name


๐Ÿ› ๏ธ Custom Agent Creation

๐Ÿงฑ Minimal Config

{ "agent_name": "my-agent", "llm_provider": "groq", "llm_api_key": "YOUR_API_KEY", "server_mode": false }

๐Ÿง  Adding Capabilities

Define specialized functions the agent can reason over:

"capabilities": [ { "name": "summarize_document", "description": "Summarize a document in a concise way", "input_schema": { "type": "object", "properties": { "document_text": { "type": "string" }, "max_length": { "type": "integer", "default": 200 } }, "required": ["document_text"] }, "prompt_template": "Summarize the following document in {max_length} words:\n\n{document_text}" } ]

๐Ÿ”„ Orchestrator Agent

{ "agent_name": "master-orchestrator", "servers": { "research-agent": { "command": "python", "args": ["src/agent/agent_runner.py", "--config=research_agent_config.json", "--server-mode"] } } }

๐Ÿงฌ How It Works

๐Ÿงฉ Capabilities as Reasoning Units

Each capability:

  1. Fills in a prompt using provided arguments

  2. Executes internal reasoning using LLMs

  3. Uses tools or external agents

  4. Returns the result

๐Ÿ“– Research Example

[INFO] agent:master-orchestrator - Executing tool: research_topic [INFO] agent:research-agent - Using tool: brave_web_search [INFO] agent:research-agent - Finished capability: research_topic

๐Ÿงฑ Technical Architecture

๐Ÿง  Key Components

Component

Role

AgentServer

Starts, configures, and runs an agent

MCPServerWrapper

Wraps the agent to expose it over MCP

CapabilityRegistry

Loads reasoning tasks from config

ToolRegistry

Discovers tools from other agents

๐ŸŒ Architecture Highlights

  • Hierarchical Design: Compose systems of agents with recursive reasoning

  • Delegated Capabilities: Agents delegate intelligently to peers

  • Tool Sharing: Tools available in one agent become accessible to others

  • Code-Free Composition: Create entire systems via configuration


๐Ÿ™Œ Acknowledgements

This project draws inspiration from the brilliant work on mcp-agents by LastMile AI.

-
security - not tested
A
license - permissive license
-
quality - not tested

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/Autumn-AIs/LW-MCP-agents'

If you have feedback or need assistance with the MCP directory API, please join our Discord server