web-browser-mcp-server

<a href="https://glama.ai/mcp/servers/3hphahzvql"><img width="380" height="200" src="https://glama.ai/mcp/servers/3hphahzvql/badge" alt="web-browser-mcp-server MCP server" /></a>

โœจ Features

๐ŸŒ Enable AI assistants to browse and extract content from the web through a simple MCP interface.

The Web Browser MCP Server provides AI models with the ability to browse websites, extract content, and understand web pages through the Message Control Protocol (MCP). It enables smart content extraction with CSS selectors and robust error handling.

<div align="center">

๐Ÿค Contribute โ€ข ๐Ÿ“ Report Bug

</div>

โœจ Core Features

  • ๐ŸŽฏ Smart Content Extraction: Target exactly what you need with CSS selectors
  • โšก Lightning Fast: Built with async processing for optimal performance
  • ๐Ÿ“Š Rich Metadata: Capture titles, links, and structured content
  • ๐Ÿ›ก๏ธ Robust & Reliable: Built-in error handling and timeout management
  • ๐ŸŒ Cross-Platform: Works everywhere Python runs

๐Ÿš€ Quick Start

Installing via Smithery

To install Web Browser Server for Claude Desktop automatically via Smithery:

npx -y @smithery/cli install web-browser-mcp-server --client claude

Installing Manually

Install using uv:

uv tool install web-browser-mcp-server

For development:

# Clone and set up development environment git clone https://github.com/blazickjp/web-browser-mcp-server.git cd web-browser-mcp-server # Create and activate virtual environment uv venv source .venv/bin/activate # Install with test dependencies uv pip install -e ".[test]"

๐Ÿ”Œ MCP Integration

Add this configuration to your MCP client config file:

{ "mcpServers": { "web-browser-mcp-server": { "command": "uv", "args": [ "tool", "run", "web-browser-mcp-server" ], "env": { "REQUEST_TIMEOUT": "30" } } } }

For Development:

{ "mcpServers": { "web-browser-mcp-server": { "command": "uv", "args": [ "--directory", "path/to/cloned/web-browser-mcp-server", "run", "web-browser-mcp-server" ], "env": { "REQUEST_TIMEOUT": "30" } } } }

๐Ÿ’ก Available Tools

The server provides a powerful web browsing tool:

browse_webpage

Browse and extract content from web pages with optional CSS selectors:

# Basic webpage fetch result = await call_tool("browse_webpage", { "url": "https://example.com" }) # Target specific content with CSS selectors result = await call_tool("browse_webpage", { "url": "https://example.com", "selectors": { "headlines": "h1, h2", "main_content": "article.content", "navigation": "nav a" } })

โš™๏ธ Configuration

Configure through environment variables:

VariablePurposeDefault
REQUEST_TIMEOUTWebpage request timeout in seconds30

๐Ÿงช Testing

Run the test suite:

python -m pytest

๐Ÿ“„ License

Released under the MIT License. See the LICENSE file for details.


<div align="center">

Made with โค๏ธ by the Pear Labs Team

<a href="https://glama.ai/mcp/servers/04dtxi5i5n"><img width="380" height="200" src="https://glama.ai/mcp/servers/04dtxi5i5n/badge" alt="Web Browser MCP Server" /></a>

</div>
A
security โ€“ no known vulnerabilities (report Issue)
A
license - permissive license
A
quality - confirmed to work

Enables web browsing capabilities using BeautifulSoup4

  1. โœจ Core Features
    1. ๐Ÿš€ Quick Start
      1. Installing via Smithery
        1. Installing Manually
          1. ๐Ÿ”Œ MCP Integration
          2. ๐Ÿ’ก Available Tools
            1. browse_webpage
            2. โš™๏ธ Configuration
              1. ๐Ÿงช Testing
                1. ๐Ÿ“„ License