mcp-snowflake-server

  • src
  • mcp_snowflake_server
import importlib.metadata import json import logging import os import time import uuid from functools import wraps from typing import Any, Callable import mcp.server.stdio import mcp.types as types import yaml from mcp.server import NotificationOptions, Server from mcp.server.models import InitializationOptions from pydantic import AnyUrl, BaseModel from snowflake.snowpark import Session from .write_detector import SQLWriteDetector # Configure logging logging.basicConfig( level=logging.INFO, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s", handlers=[logging.StreamHandler()], ) logger = logging.getLogger("mcp_snowflake_server") def data_to_yaml(data: Any) -> str: return yaml.dump(data, indent=2, sort_keys=False) class SnowflakeDB: AUTH_EXPIRATION_TIME = 1800 def __init__(self, connection_config: dict): self.connection_config = connection_config self.session = None self.insights: list[str] = [] self.auth_time = 0 def _init_database(self): """Initialize connection to the Snowflake database""" try: self.session = Session.builder.configs(self.connection_config).create() for component in ["database", "schema", "warehouse"]: self.session.sql(f"USE {component.upper()} {self.connection_config[component].upper()}") self.auth_time = time.time() except Exception as e: raise ValueError(f"Failed to connect to Snowflake database: {e}") def execute_query(self, query: str) -> list[dict[str, Any]]: """Execute a SQL query and return results as a list of dictionaries""" if not self.session or time.time() - self.auth_time > self.AUTH_EXPIRATION_TIME: self._init_database() logger.debug(f"Executing query: {query}") try: result = self.session.sql(query).to_pandas() result_rows = result.to_dict(orient="records") data_id = str(uuid.uuid4()) return result_rows, data_id except Exception as e: logger.error(f'Database error executing "{query}": {e}') raise def add_insight(self, insight: str) -> None: """Add a new insight to the collection""" self.insights.append(insight) def get_memo(self) -> str: """Generate a formatted memo from collected insights""" if not self.insights: return "No data insights have been discovered yet." memo = "📊 Data Intelligence Memo 📊\n\n" memo += "Key Insights Discovered:\n\n" memo += "\n".join(f"- {insight}" for insight in self.insights) if len(self.insights) > 1: memo += f"\n\nSummary:\nAnalysis has revealed {len(self.insights)} key data insights that suggest opportunities for strategic optimization and growth." return memo def handle_tool_errors(func: Callable) -> Callable: """Decorator to standardize tool error handling""" @wraps(func) async def wrapper(*args, **kwargs) -> list[types.TextContent]: try: return await func(*args, **kwargs) except Exception as e: logger.error(f"Error in {func.__name__}: {str(e)}") return [types.TextContent(type="text", text=f"Error: {str(e)}")] return wrapper class Tool(BaseModel): name: str description: str input_schema: dict[str, Any] handler: Callable[[str, dict[str, Any] | None], list[types.TextContent | types.ImageContent | types.EmbeddedResource]] tags: list[str] = [] # Tool handlers async def handle_list_tables(arguments, db, *_): query = f""" SELECT table_catalog, table_schema, table_name, comment FROM {db.connection_config['database']}.information_schema.tables WHERE table_schema = '{db.connection_config['schema'].upper()}' """ data, data_id = db.execute_query(query) output = { "type": "data", "data_id": data_id, "data": data, } yaml_output = data_to_yaml(output) json_output = json.dumps(output) return [ types.TextContent(type="text", text=yaml_output), types.EmbeddedResource( type="resource", resource=types.TextResourceContents(uri=f"data://{data_id}", text=json_output, mimeType="application/json"), ), ] async def handle_describe_table(arguments, db, *_): if not arguments or "table_name" not in arguments: raise ValueError("Missing table_name argument") split_identifier = arguments["table_name"].split(".") table_name = split_identifier[-1].upper() schema_name = (split_identifier[-2] if len(split_identifier) > 1 else db.connection_config["schema"]).upper() database_name = (split_identifier[-3] if len(split_identifier) > 2 else db.connection_config["database"]).upper() query = f""" SELECT column_name, column_default, is_nullable, data_type, comment FROM {database_name}.information_schema.columns WHERE table_schema = '{schema_name}' AND table_name = '{table_name}' """ data, data_id = db.execute_query(query) output = { "type": "data", "data_id": data_id, "data": data, } yaml_output = data_to_yaml(output) json_output = json.dumps(output) return [ types.TextContent(type="text", text=yaml_output), types.EmbeddedResource( type="resource", resource=types.TextResourceContents(uri=f"data://{data_id}", text=json_output, mimeType="application/json"), ), ] async def handle_read_query(arguments, db, write_detector, *_): if write_detector.analyze_query(arguments["query"])["contains_write"]: raise ValueError("Calls to read_query should not contain write operations") data, data_id = db.execute_query(arguments["query"]) output = { "type": "data", "data_id": data_id, "data": data, } yaml_output = data_to_yaml(output) json_output = json.dumps(output) return [ types.TextContent(type="text", text=yaml_output), types.EmbeddedResource( type="resource", resource=types.TextResourceContents(uri=f"data://{data_id}", text=json_output, mimeType="application/json"), ), ] async def handle_append_insight(arguments, db, _, __, server): if not arguments or "insight" not in arguments: raise ValueError("Missing insight argument") db.add_insight(arguments["insight"]) await server.request_context.session.send_resource_updated(AnyUrl("memo://insights")) return [types.TextContent(type="text", text="Insight added to memo")] async def handle_write_query(arguments, db, _, allow_write, __): if not allow_write: raise ValueError("Write operations are not allowed for this data connection") if arguments["query"].strip().upper().startswith("SELECT"): raise ValueError("SELECT queries are not allowed for write_query") results, data_id = db.execute_query(arguments["query"]) return [types.TextContent(type="text", text=str(results))] async def handle_create_table(arguments, db, _, allow_write, __): if not allow_write: raise ValueError("Write operations are not allowed for this data connection") if not arguments["query"].strip().upper().startswith("CREATE TABLE"): raise ValueError("Only CREATE TABLE statements are allowed") results, data_id = db.execute_query(arguments["query"]) return [types.TextContent(type="text", text=f"Table created successfully. data_id = {data_id}")] async def prefetch_tables(db: SnowflakeDB, credentials: dict) -> dict: """Prefetch table and column information""" try: logger.info("Prefetching table descriptions") table_results, data_id = db.execute_query( f"""SELECT table_name, comment FROM {credentials['database']}.information_schema.tables WHERE table_schema = '{credentials['schema'].upper()}'""" ) column_results, data_id = db.execute_query( f"""SELECT table_name, column_name, data_type, comment FROM {credentials['database']}.information_schema.columns WHERE table_schema = '{credentials['schema'].upper()}'""" ) tables_brief = {} for row in table_results: tables_brief[row["TABLE_NAME"]] = {**row, "COLUMNS": {}} for row in column_results: row_without_table_name = row.copy() del row_without_table_name["TABLE_NAME"] tables_brief[row["TABLE_NAME"]]["COLUMNS"][row["COLUMN_NAME"]] = row_without_table_name return tables_brief except Exception as e: logger.error(f"Error prefetching table descriptions: {e}") return f"Error prefetching table descriptions: {e}" async def main( allow_write: bool = False, connection_args: dict = None, log_dir: str = None, prefetch: bool = False, log_level: str = "INFO", exclude_tools: list[str] = [], ): # Setup logging if log_dir: os.makedirs(log_dir, exist_ok=True) logger.handlers.append(logging.FileHandler(os.path.join(log_dir, "mcp_snowflake_server.log"))) if log_level: logger.setLevel(log_level) logger.info("Starting Snowflake MCP Server") logger.info("Allow write operations: %s", allow_write) logger.info("Prefetch table descriptions: %s", prefetch) logger.info("Excluded tools: %s", exclude_tools) db = SnowflakeDB(connection_args) server = Server("snowflake-manager") write_detector = SQLWriteDetector() tables_info = (await prefetch_tables(db, connection_args)) if prefetch else {} tables_brief = data_to_yaml(tables_info) if prefetch else "" all_tools = [ Tool( name="list_tables", description="List all tables in the Snowflake database", input_schema={ "type": "object", "properties": {}, }, handler=handle_list_tables, tags=["description"], ), Tool( name="describe_table", description="Get the schema information for a specific table", input_schema={ "type": "object", "properties": {"table_name": {"type": "string", "description": "Name of the table to describe"}}, "required": ["table_name"], }, handler=handle_describe_table, tags=["description"], ), Tool( name="read_query", description="Execute a SELECT query.", input_schema={ "type": "object", "properties": {"query": {"type": "string", "description": "SELECT SQL query to execute"}}, "required": ["query"], }, handler=handle_read_query, ), Tool( name="append_insight", description="Add a data insight to the memo", input_schema={ "type": "object", "properties": {"insight": {"type": "string", "description": "Data insight discovered from analysis"}}, "required": ["insight"], }, handler=handle_append_insight, tags=["resource_based"], ), Tool( name="write_query", description="Execute an INSERT, UPDATE, or DELETE query on the Snowflake database", input_schema={ "type": "object", "properties": {"query": {"type": "string", "description": "SQL query to execute"}}, "required": ["query"], }, handler=handle_write_query, tags=["write"], ), Tool( name="create_table", description="Create a new table in the Snowflake database", input_schema={ "type": "object", "properties": {"query": {"type": "string", "description": "CREATE TABLE SQL statement"}}, "required": ["query"], }, handler=handle_create_table, tags=["write"], ), ] exclude_tags = [] if not allow_write: exclude_tags.append("write") if prefetch: exclude_tags.append("description") allowed_tools = [ tool for tool in all_tools if tool.name not in exclude_tools and not any(tag in exclude_tags for tag in tool.tags) ] logger.info("Allowed tools: %s", [tool.name for tool in allowed_tools]) # Register handlers @server.list_resources() async def handle_list_resources() -> list[types.Resource]: resources = [ types.Resource( uri=AnyUrl("memo://insights"), name="Data Insights Memo", description="A living document of discovered data insights", mimeType="text/plain", ) ] table_brief_resources = [ types.Resource( uri=AnyUrl(f"context://table/{table_name}"), name=f"{table_name} table", description=f"Description of the {table_name} table", mimeType="text/plain", ) for table_name in tables_info.keys() ] resources += table_brief_resources return resources @server.read_resource() async def handle_read_resource(uri: AnyUrl) -> str: if str(uri) == "memo://insights": return db.get_memo() elif str(uri).startswith("context://table"): table_name = str(uri).split("/")[-1] if table_name in tables_info: return data_to_yaml(tables_info[table_name]) else: raise ValueError(f"Unknown table: {table_name}") else: raise ValueError(f"Unknown resource: {uri}") @server.list_prompts() async def handle_list_prompts() -> list[types.Prompt]: return [] @server.get_prompt() async def handle_get_prompt(name: str, arguments: dict[str, str] | None) -> types.GetPromptResult: raise ValueError(f"Unknown prompt: {name}") @server.call_tool() @handle_tool_errors async def handle_call_tool( name: str, arguments: dict[str, Any] | None ) -> list[types.TextContent | types.ImageContent | types.EmbeddedResource]: if name in exclude_tools: return [types.TextContent(type="text", text=f"Tool {name} is excluded from this data connection")] handler = next((tool.handler for tool in allowed_tools if tool.name == name), None) if not handler: raise ValueError(f"Unknown tool: {name}") return await handler(arguments, db, write_detector, allow_write, server) @server.list_tools() async def handle_list_tools() -> list[types.Tool]: logger.info("Listing tools") logger.error(f"Allowed tools: {allowed_tools}") tools = [ types.Tool( name=tool.name, description=tool.description, inputSchema=tool.input_schema, ) for tool in allowed_tools ] return tools # Start server async with mcp.server.stdio.stdio_server() as (read_stream, write_stream): logger.info("Server running with stdio transport") await server.run( read_stream, write_stream, InitializationOptions( server_name="snowflake", server_version=importlib.metadata.version("mcp_snowflake_server"), capabilities=server.get_capabilities( notification_options=NotificationOptions(), experimental_capabilities={}, ), ), )