Skip to main content
Glama

author:brendan-ch MCP tools

Production-ready MCP servers that extend AI capabilities through file access, database connections, APIs, and contextual services.

69,955 tools. Last updated 2026-02-06 21:59
  • Compile ExoQuery Kotlin code and EXECUTE it against an Sqlite database with provided schema. ExoQuery is a compile-time SQL query builder that translates Kotlin DSL expressions into SQL. WHEN TO USE: When you need to verify ExoQuery produces correct results against actual data. INPUT REQUIREMENTS: - Complete Kotlin code (same requirements as validateExoquery) - SQL schema with CREATE TABLE and INSERT statements for test data - Data classes MUST exactly match the schema table structure - Column names in data classes must match schema (use @SerialName for snake_case columns) - Must include or or more .runSample() calls in main() to trigger SQL generation and execution (note that .runSample() is NOT or real production use, use .runOn(database) instead) OUTPUT FORMAT: Returns one or more JSON objects, each on its own line. Each object can be: 1. SQL with output (query executed successfully): {"sql": "SELECT u.name FROM \"User\" u", "output": "[(name=Alice), (name=Bob)]"} 2. Output only (e.g., print statements, intermediate results): {"output": "Before: [(id=1, title=Ion Blend Beans)]"} 3. Error output (runtime errors, exceptions): {"outputErr": "java.sql.SQLException: Table \"USERS\" not found"} Multiple results appear when code has multiple queries or print statements: {"sql": "SELECT * FROM \"InventoryItem\"", "output": "[(id=1, title=Ion Blend Beans, unit_price=32.00, in_stock=25)]"} {"output": "Before:"} {"sql": "INSERT INTO \"InventoryItem\" (title, unit_price, in_stock) VALUES (?, ?, ?)", "output": "Rows affected: 1"} {"output": "After:"} {"sql": "SELECT * FROM \"InventoryItem\"", "output": "[(id=1, title=Ion Blend Beans, unit_price=32.00, in_stock=25), (id=2, title=Luna Fuel Flask, unit_price=89.50, in_stock=6)]"} Compilation errors return the same format as validateExoquery: { "errors": { "File.kt": [ { "interval": {"start": {"line": 12, "ch": 10}, "end": {"line": 12, "ch": 15}}, "message": "Type mismatch: inferred type is String but Int was expected", "severity": "ERROR", "className": "ERROR" } ] } } Runtime Errors can have the following format: { "errors" : { "File.kt" : [ ] }, "exception" : { "message" : "[SQLITE_ERROR] SQL error or missing database (no such table: User)", "fullName" : "org.sqlite.SQLiteException", "stackTrace" : [ { "className" : "org.sqlite.core.DB", "methodName" : "newSQLException", "fileName" : "DB.java", "lineNumber" : 1179 }, ...] }, "text" : "<outStream><outputObject>\n{\"sql\": \"SELECT x.id, x.name, x.age FROM User x\"}\n</outputObject>\n</outStream>" } If there was a SQL query generated before the error, it will appear in the "text" field output stream. EXAMPLE INPUT CODE: ```kotlin import io.exoquery.* import kotlinx.serialization.Serializable import kotlinx.serialization.SerialName @Serializable data class User(val id: Int, val name: String, val age: Int) @Serializable data class Order(val id: Int, @SerialName("user_id") val userId: Int, val total: Int) val userOrders = sql.select { val u = from(Table<User>()) val o = join(Table<Order>()) { o -> o.userId == u.id } Triple(u.name, o.total, u.age) } fun main() = userOrders.buildPrettyFor.Sqlite().runSample() ``` EXAMPLE INPUT SCHEMA: ```sql CREATE TABLE "User" (id INT, name VARCHAR(100), age INT); CREATE TABLE "Order" (id INT, user_id INT, total INT); INSERT INTO "User" (id, name, age) VALUES (1, 'Alice', 30), (2, 'Bob', 25); INSERT INTO "Order" (id, user_id, total) VALUES (1, 1, 100), (2, 1, 200), (3, 2, 150); ``` EXAMPLE SUCCESS OUTPUT: {"sql": "SELECT u.name AS first, o.total AS second, u.age AS third FROM \"User\" u INNER JOIN \"Order\" o ON o.user_id = u.id", "output": "[(first=Alice, second=100, third=30), (first=Alice, second=200, third=30), (first=Bob, second=150, third=25)]"} EXAMPLE WITH MULTIPLE OPERATIONS (insert with before/after check): {"output": "Before:"} {"sql": "SELECT * FROM \"InventoryItem\"", "output": "[(id=1, title=Ion Blend Beans)]"} {"sql": "INSERT INTO \"InventoryItem\" (title, unit_price, in_stock) VALUES (?, ?, ?)", "output": ""} {"output": "After:"} {"sql": "SELECT * FROM \"InventoryItem\"", "output": "[(id=1, title=Ion Blend Beans), (id=2, title=Luna Fuel Flask)]"} EXAMPLE RUNTIME ERROR (if a user divided by zero): {"outputErr": "Exception in thread "main" java.lang.ArithmeticException: / by zero"} KEY PATTERNS: (See validateExoquery for complete pattern reference) Summary of most common patterns: - Filter: sql { Table<T>().filter { x -> x.field == value } } - Select: sql.select { val x = from(Table<T>()); where { ... }; x } - Join: sql.select { val a = from(Table<A>()); val b = join(Table<B>()) { b -> b.aId == a.id }; Pair(a, b) } - Left join: joinLeft(Table<T>()) { ... } returns nullable - Insert: sql { insert<T> { setParams(obj).excluding(id) } } - Update: sql { update<T>().set { it.field to value }.where { it.id == x } } - Delete: sql { delete<T>().where { it.id == x } } SCHEMA RULES: - Table names should match data class names (case-sensitive, use quotes for exact match) - Column names must match @SerialName values or property names - Include realistic test data to verify query logic - Sqlite database syntax (mostly compatible with standard SQL) COMMON PATTERNS: - JSON columns: Use VARCHAR for storage, @SqlJsonValue on the nested data class - Auto-increment IDs: Use INTEGER PRIMARY KEY - Nullable columns: Use Type? in Kotlin, allow NULL in schema
    Connector
  • Compile ExoQuery Kotlin code and EXECUTE it against an Sqlite database with provided schema. ExoQuery is a compile-time SQL query builder that translates Kotlin DSL expressions into SQL. WHEN TO USE: When you need to verify ExoQuery produces correct results against actual data. INPUT REQUIREMENTS: - Complete Kotlin code (same requirements as validateExoquery) - SQL schema with CREATE TABLE and INSERT statements for test data - Data classes MUST exactly match the schema table structure - Column names in data classes must match schema (use @SerialName for snake_case columns) - Must include or or more .runSample() calls in main() to trigger SQL generation and execution (note that .runSample() is NOT or real production use, use .runOn(database) instead) OUTPUT FORMAT: Returns one or more JSON objects, each on its own line. Each object can be: 1. SQL with output (query executed successfully): {"sql": "SELECT u.name FROM \"User\" u", "output": "[(name=Alice), (name=Bob)]"} 2. Output only (e.g., print statements, intermediate results): {"output": "Before: [(id=1, title=Ion Blend Beans)]"} 3. Error output (runtime errors, exceptions): {"outputErr": "java.sql.SQLException: Table \"USERS\" not found"} Multiple results appear when code has multiple queries or print statements: {"sql": "SELECT * FROM \"InventoryItem\"", "output": "[(id=1, title=Ion Blend Beans, unit_price=32.00, in_stock=25)]"} {"output": "Before:"} {"sql": "INSERT INTO \"InventoryItem\" (title, unit_price, in_stock) VALUES (?, ?, ?)", "output": "Rows affected: 1"} {"output": "After:"} {"sql": "SELECT * FROM \"InventoryItem\"", "output": "[(id=1, title=Ion Blend Beans, unit_price=32.00, in_stock=25), (id=2, title=Luna Fuel Flask, unit_price=89.50, in_stock=6)]"} Compilation errors return the same format as validateExoquery: { "errors": { "File.kt": [ { "interval": {"start": {"line": 12, "ch": 10}, "end": {"line": 12, "ch": 15}}, "message": "Type mismatch: inferred type is String but Int was expected", "severity": "ERROR", "className": "ERROR" } ] } } Runtime Errors can have the following format: { "errors" : { "File.kt" : [ ] }, "exception" : { "message" : "[SQLITE_ERROR] SQL error or missing database (no such table: User)", "fullName" : "org.sqlite.SQLiteException", "stackTrace" : [ { "className" : "org.sqlite.core.DB", "methodName" : "newSQLException", "fileName" : "DB.java", "lineNumber" : 1179 }, ...] }, "text" : "<outStream><outputObject>\n{\"sql\": \"SELECT x.id, x.name, x.age FROM User x\"}\n</outputObject>\n</outStream>" } If there was a SQL query generated before the error, it will appear in the "text" field output stream. EXAMPLE INPUT CODE: ```kotlin import io.exoquery.* import kotlinx.serialization.Serializable import kotlinx.serialization.SerialName @Serializable data class User(val id: Int, val name: String, val age: Int) @Serializable data class Order(val id: Int, @SerialName("user_id") val userId: Int, val total: Int) val userOrders = sql.select { val u = from(Table<User>()) val o = join(Table<Order>()) { o -> o.userId == u.id } Triple(u.name, o.total, u.age) } fun main() = userOrders.buildPrettyFor.Sqlite().runSample() ``` EXAMPLE INPUT SCHEMA: ```sql CREATE TABLE "User" (id INT, name VARCHAR(100), age INT); CREATE TABLE "Order" (id INT, user_id INT, total INT); INSERT INTO "User" (id, name, age) VALUES (1, 'Alice', 30), (2, 'Bob', 25); INSERT INTO "Order" (id, user_id, total) VALUES (1, 1, 100), (2, 1, 200), (3, 2, 150); ``` EXAMPLE SUCCESS OUTPUT: {"sql": "SELECT u.name AS first, o.total AS second, u.age AS third FROM \"User\" u INNER JOIN \"Order\" o ON o.user_id = u.id", "output": "[(first=Alice, second=100, third=30), (first=Alice, second=200, third=30), (first=Bob, second=150, third=25)]"} EXAMPLE WITH MULTIPLE OPERATIONS (insert with before/after check): {"output": "Before:"} {"sql": "SELECT * FROM \"InventoryItem\"", "output": "[(id=1, title=Ion Blend Beans)]"} {"sql": "INSERT INTO \"InventoryItem\" (title, unit_price, in_stock) VALUES (?, ?, ?)", "output": ""} {"output": "After:"} {"sql": "SELECT * FROM \"InventoryItem\"", "output": "[(id=1, title=Ion Blend Beans), (id=2, title=Luna Fuel Flask)]"} EXAMPLE RUNTIME ERROR (if a user divided by zero): {"outputErr": "Exception in thread "main" java.lang.ArithmeticException: / by zero"} KEY PATTERNS: (See validateExoquery for complete pattern reference) Summary of most common patterns: - Filter: sql { Table<T>().filter { x -> x.field == value } } - Select: sql.select { val x = from(Table<T>()); where { ... }; x } - Join: sql.select { val a = from(Table<A>()); val b = join(Table<B>()) { b -> b.aId == a.id }; Pair(a, b) } - Left join: joinLeft(Table<T>()) { ... } returns nullable - Insert: sql { insert<T> { setParams(obj).excluding(id) } } - Update: sql { update<T>().set { it.field to value }.where { it.id == x } } - Delete: sql { delete<T>().where { it.id == x } } SCHEMA RULES: - Table names should match data class names (case-sensitive, use quotes for exact match) - Column names must match @SerialName values or property names - Include realistic test data to verify query logic - Sqlite database syntax (mostly compatible with standard SQL) COMMON PATTERNS: - JSON columns: Use VARCHAR for storage, @SqlJsonValue on the nested data class - Auto-increment IDs: Use INTEGER PRIMARY KEY - Nullable columns: Use Type? in Kotlin, allow NULL in schema
    Connector
  • Retrieve Concentrated Liquidity (CL) pools from the Osmosis blockchain. Specify limit to control the number of pools returned. Ideal for querying liquidity pool data.
    MIT
  • Retrieve all concentrated liquidity positions for a specified Osmosis user address, with optional filtering by pool ID to view specific liquidity allocations.
    MIT
  • Copy files or directories within virtual filesystem workspaces to duplicate content across storage providers and scopes.
    MIT
  • Navigate between directories in virtual filesystem workspaces to access and manage files across multiple storage providers.
    MIT

Interested in MCP?

Join the MCP community for support and updates.

RedditDiscord

Matching MCP servers