OpenRouter MCP Server
- src
- mcp_server_qdrant
from typing import Optional
from mcp.server import Server, NotificationOptions
from mcp.server.models import InitializationOptions
import click
import mcp.types as types
import asyncio
import mcp
from .qdrant import QdrantConnector
def serve(
qdrant_url: Optional[str],
qdrant_api_key: Optional[str],
collection_name: str,
fastembed_model_name: str,
qdrant_local_path: Optional[str] = None,
) -> Server:
"""
Instantiate the server and configure tools to store and find memories in Qdrant.
:param qdrant_url: The URL of the Qdrant server.
:param qdrant_api_key: The API key to use for the Qdrant server.
:param collection_name: The name of the collection to use.
:param fastembed_model_name: The name of the FastEmbed model to use.
:param qdrant_local_path: The path to the storage directory for the Qdrant client, if local mode is used.
"""
server = Server("qdrant")
qdrant = QdrantConnector(
qdrant_url, qdrant_api_key, collection_name, fastembed_model_name, qdrant_local_path
)
@server.list_tools()
async def handle_list_tools() -> list[types.Tool]:
"""
Return the list of tools that the server provides. By default, there are two
tools: one to store memories and another to find them. Finding the memories is not
implemented as a resource, as it requires a query to be passed and resources point
to a very specific piece of data.
"""
return [
types.Tool(
name="qdrant-store-memory",
description=(
"Keep the memory for later use, when you are asked to remember something."
),
inputSchema={
"type": "object",
"properties": {
"information": {
"type": "string",
},
},
"required": ["information"],
},
),
types.Tool(
name="qdrant-find-memories",
description=(
"Look up memories in Qdrant. Use this tool when you need to: \n"
" - Find memories by their content \n"
" - Access memories for further analysis \n"
" - Get some personal information about the user"
),
inputSchema={
"type": "object",
"properties": {
"query": {
"type": "string",
"description": "The query to search for in the memories",
},
},
"required": ["query"],
},
),
]
@server.call_tool()
async def handle_tool_call(
name: str, arguments: dict | None
) -> list[types.TextContent | types.ImageContent | types.EmbeddedResource]:
if name not in ["qdrant-store-memory", "qdrant-find-memories"]:
raise ValueError(f"Unknown tool: {name}")
if name == "qdrant-store-memory":
if not arguments or "information" not in arguments:
raise ValueError("Missing required argument 'information'")
information = arguments["information"]
await qdrant.store_memory(information)
return [types.TextContent(type="text", text=f"Remembered: {information}")]
if name == "qdrant-find-memories":
if not arguments or "query" not in arguments:
raise ValueError("Missing required argument 'query'")
query = arguments["query"]
memories = await qdrant.find_memories(query)
content = [
types.TextContent(
type="text", text=f"Memories for the query '{query}'"
),
]
for memory in memories:
content.append(
types.TextContent(type="text", text=f"<memory>{memory}</memory>")
)
return content
return server
@click.command()
@click.option(
"--qdrant-url",
envvar="QDRANT_URL",
required=False,
help="Qdrant URL",
)
@click.option(
"--qdrant-api-key",
envvar="QDRANT_API_KEY",
required=False,
help="Qdrant API key",
)
@click.option(
"--collection-name",
envvar="COLLECTION_NAME",
required=True,
help="Collection name",
)
@click.option(
"--fastembed-model-name",
envvar="FASTEMBED_MODEL_NAME",
required=True,
help="FastEmbed model name",
default="sentence-transformers/all-MiniLM-L6-v2",
)
@click.option(
"--qdrant-local-path",
envvar="QDRANT_LOCAL_PATH",
required=False,
help="Qdrant local path",
)
def main(
qdrant_url: Optional[str],
qdrant_api_key: str,
collection_name: Optional[str],
fastembed_model_name: str,
qdrant_local_path: Optional[str],
):
# XOR of url and local path, since we accept only one of them
if not (bool(qdrant_url) ^ bool(qdrant_local_path)):
raise ValueError("Exactly one of qdrant-url or qdrant-local-path must be provided")
async def _run():
async with mcp.server.stdio.stdio_server() as (read_stream, write_stream):
server = serve(
qdrant_url,
qdrant_api_key,
collection_name,
fastembed_model_name,
qdrant_local_path,
)
await server.run(
read_stream,
write_stream,
InitializationOptions(
server_name="qdrant",
server_version="0.5.1",
capabilities=server.get_capabilities(
notification_options=NotificationOptions(),
experimental_capabilities={},
),
),
)
asyncio.run(_run())