OpenRouter MCP Server

Integrations

  • Provides a type-safe interface for accessing and interacting with OpenRouter.ai's diverse model ecosystem

OpenRouter MCP Server

A Model Context Protocol (MCP) server providing seamless integration with OpenRouter.ai's diverse model ecosystem. Access various AI models through a unified, type-safe interface with built-in caching, rate limiting, and error handling.

Features

  • Model Access
    • Direct access to all OpenRouter.ai models
    • Automatic model validation and capability checking
    • Default model configuration support
  • Performance Optimization
    • Smart model information caching (1-hour expiry)
    • Automatic rate limit management
    • Exponential backoff for failed requests
  • Unified Response Format
    • Consistent ToolResult structure for all responses
    • Clear error identification with isError flag
    • Structured error messages with context

Installation

pnpm install @mcpservers/openrouterai

Configuration

Prerequisites

  1. Get your OpenRouter API key from OpenRouter Keys
  2. Choose a default model (optional)

Environment Variables

OPENROUTER_API_KEY=your-api-key-here OPENROUTER_DEFAULT_MODEL=optional-default-model

Setup

Add to your MCP settings configuration file (cline_mcp_settings.json or claude_desktop_config.json):

{ "mcpServers": { "openrouterai": { "command": "npx", "args": ["@mcpservers/openrouterai"], "env": { "OPENROUTER_API_KEY": "your-api-key-here", "OPENROUTER_DEFAULT_MODEL": "optional-default-model" } } } }

Response Format

All tools return responses in a standardized structure:

interface ToolResult { isError: boolean; content: Array<{ type: "text"; text: string; // JSON string or error message }>; }

Success Example:

{ "isError": false, "content": [{ "type": "text", "text": "{\"id\": \"gen-123\", ...}" }] }

Error Example:

{ "isError": true, "content": [{ "type": "text", "text": "Error: Model validation failed - 'invalid-model' not found" }] }

Available Tools

chat_completion

Send messages to OpenRouter.ai models:

interface ChatCompletionRequest { model?: string; messages: Array<{role: "user"|"system"|"assistant", content: string}>; temperature?: number; // 0-2 } // Response: ToolResult with chat completion data or error

search_models

Search and filter available models:

interface ModelSearchRequest { query?: string; provider?: string; minContextLength?: number; capabilities?: { functions?: boolean; vision?: boolean; }; } // Response: ToolResult with model list or error

get_model_info

Get detailed information about a specific model:

{ model: string; // Model identifier }

validate_model

Check if a model ID is valid:

interface ModelValidationRequest { model: string; } // Response: // Success: { isError: false, valid: true } // Error: { isError: true, error: "Model not found" }

Error Handling

The server provides structured errors with contextual information:

// Error response structure { isError: true, content: [{ type: "text", text: "Error: [Category] - Detailed message" }] }

Common Error Categories:

  • Validation Error: Invalid input parameters
  • API Error: OpenRouter API communication issues
  • Rate Limit: Request throttling detection
  • Internal Error: Server-side processing failures

Handling Responses:

async function handleResponse(result: ToolResult) { if (result.isError) { const errorMessage = result.content[0].text; if (errorMessage.startsWith('Error: Rate Limit')) { // Handle rate limiting } // Other error handling } else { const data = JSON.parse(result.content[0].text); // Process successful response } }

Development

See CONTRIBUTING.md for detailed information about:

  • Development setup
  • Project structure
  • Feature implementation
  • Error handling guidelines
  • Tool usage examples
# Install dependencies pnpm install # Build project pnpm run build # Run tests pnpm test

Changelog

See CHANGELOG.md for recent updates including:

  • Unified response format implementation
  • Enhanced error handling system
  • Type-safe interface improvements

License

This project is licensed under the Apache License 2.0 - see the LICENSE file for details.

You must be authenticated.

A
security – no known vulnerabilities
A
license - permissive license
A
quality - confirmed to work

remote-capable server

The server can be hosted and run remotely because it primarily relies on remote services or has no dependency on the local environment.

Provides integration with OpenRouter.ai, allowing access to various AI models through a unified interface.

  1. Features
    1. Installation
      1. Configuration
        1. Prerequisites
        2. Environment Variables
        3. Setup
      2. Response Format
        1. Available Tools
          1. chat_completion
          2. search_models
          3. get_model_info
          4. validate_model
        2. Error Handling
          1. Development
            1. Changelog
              1. License

                Related MCP Servers

                • -
                  security
                  A
                  license
                  -
                  quality
                  This server facilitates the invocation of AI models from providers like Anthropic, OpenAI, and Groq, enabling users to manage and configure large language model interactions seamlessly.
                  Last updated -
                  4
                  Python
                  MIT License
                • -
                  security
                  A
                  license
                  -
                  quality
                  A proxy server that bridges AI agents and external APIs by dynamically translating OpenAPI specifications into standardized MCP tools, enabling seamless interaction without custom integration code.
                  Last updated -
                  29
                  Python
                  MIT License
                  • Linux
                  • Apple
                • -
                  security
                  A
                  license
                  -
                  quality
                  Enables AI agents to interact with multiple LLM providers (OpenAI, Anthropic, Google, DeepSeek) through a standardized interface, making it easy to switch between models or use multiple models in the same application.
                  Last updated -
                  3
                  Python
                  MIT License
                  • Linux
                  • Apple
                • A
                  security
                  A
                  license
                  A
                  quality
                  An AI router that connects applications to multiple LLM providers (OpenAI, Anthropic, Google, DeepSeek, Ollama, etc.) with smart model orchestration capabilities, enabling dynamic switching between models for different reasoning tasks.
                  Last updated -
                  3
                  1
                  TypeScript
                  MIT License
                  • Linux
                  • Apple

                View all related MCP servers

                ID: xdnmf8yei0