Skip to main content
Glama

OpenAI WebSearch MCP Server

by ConechoAI
# OpenAI WebSearch MCP Server 🔍 [![PyPI version](https://badge.fury.io/py/openai-websearch-mcp.svg)](https://badge.fury.io/py/openai-websearch-mcp) [![Python 3.10+](https://img.shields.io/badge/python-3.10+-blue.svg)](https://www.python.org/downloads/) [![MCP Compatible](https://img.shields.io/badge/MCP-Compatible-green.svg)](https://modelcontextprotocol.io/) [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT) An advanced MCP server that provides intelligent web search capabilities using OpenAI's reasoning models. Perfect for AI assistants that need up-to-date information with smart reasoning capabilities. ## ✨ Features - **🧠 Reasoning Model Support**: Full compatibility with OpenAI's latest reasoning models (gpt-5, gpt-5-mini, gpt-5-nano, o3, o4-mini) - **⚡ Smart Effort Control**: Intelligent `reasoning_effort` defaults based on use case - **🔄 Multi-Mode Search**: Fast iterations with gpt-5-mini or deep research with gpt-5 - **🌍 Localized Results**: Support for location-based search customization - **📝 Rich Descriptions**: Complete parameter documentation for easy integration - **🔧 Flexible Configuration**: Environment variable support for easy deployment ## 🚀 Quick Start ### One-Click Installation for Claude Desktop ```bash OPENAI_API_KEY=sk-xxxx uvx --with openai-websearch-mcp openai-websearch-mcp-install ``` Replace `sk-xxxx` with your OpenAI API key from the [OpenAI Platform](https://platform.openai.com/). ## ⚙️ Configuration ### Claude Desktop Add to your `claude_desktop_config.json`: ```json { "mcpServers": { "openai-websearch-mcp": { "command": "uvx", "args": ["openai-websearch-mcp"], "env": { "OPENAI_API_KEY": "your-api-key-here", "OPENAI_DEFAULT_MODEL": "gpt-5-mini" } } } } ``` ### Cursor Add to your MCP settings in Cursor: 1. Open Cursor Settings (`Cmd/Ctrl + ,`) 2. Search for "MCP" or go to Extensions → MCP 3. Add server configuration: ```json { "mcpServers": { "openai-websearch-mcp": { "command": "uvx", "args": ["openai-websearch-mcp"], "env": { "OPENAI_API_KEY": "your-api-key-here", "OPENAI_DEFAULT_MODEL": "gpt-5-mini" } } } } ``` ### Claude Code Claude Code automatically detects MCP servers configured for Claude Desktop. Use the same configuration as above for Claude Desktop. ### Local Development For local testing, use the absolute path to your virtual environment: ```json { "mcpServers": { "openai-websearch-mcp": { "command": "/path/to/your/project/.venv/bin/python", "args": ["-m", "openai_websearch_mcp"], "env": { "OPENAI_API_KEY": "your-api-key-here", "OPENAI_DEFAULT_MODEL": "gpt-5-mini", "PYTHONPATH": "/path/to/your/project/src" } } } } ``` ## 🛠️ Available Tools ### `openai_web_search` Intelligent web search with reasoning model support. #### Parameters | Parameter | Type | Description | Default | |-----------|------|-------------|---------| | `input` | `string` | The search query or question to search for | *Required* | | `model` | `string` | AI model to use. Supports gpt-4o, gpt-4o-mini, gpt-5, gpt-5-mini, gpt-5-nano, o3, o4-mini | `gpt-5-mini` | | `reasoning_effort` | `string` | Reasoning effort level: low, medium, high, minimal | Smart default | | `type` | `string` | Web search API version | `web_search_preview` | | `search_context_size` | `string` | Context amount: low, medium, high | `medium` | | `user_location` | `object` | Optional location for localized results | `null` | ## 💬 Usage Examples Once configured, simply ask your AI assistant to search for information using natural language: ### Quick Search > "Search for the latest developments in AI reasoning models using openai_web_search" ### Deep Research > "Use openai_web_search with gpt-5 and high reasoning effort to provide a comprehensive analysis of quantum computing breakthroughs" ### Localized Search > "Search for local tech meetups in San Francisco this week using openai_web_search" The AI assistant will automatically use the `openai_web_search` tool with appropriate parameters based on your request. ## 🤖 Model Selection Guide ### Quick Multi-Round Searches 🚀 - **Recommended**: `gpt-5-mini` with `reasoning_effort: "low"` - **Use Case**: Fast iterations, real-time information, multiple quick queries - **Benefits**: Lower latency, cost-effective for frequent searches ### Deep Research 🔬 - **Recommended**: `gpt-5` with `reasoning_effort: "medium"` or `"high"` - **Use Case**: Comprehensive analysis, complex topics, detailed investigation - **Benefits**: Multi-round reasoned results, no need for agent iterations ### Model Comparison | Model | Reasoning | Default Effort | Best For | |-------|-----------|----------------|----------| | `gpt-4o` | ❌ | N/A | Standard search | | `gpt-4o-mini` | ❌ | N/A | Basic queries | | `gpt-5-mini` | ✅ | `low` | Fast iterations | | `gpt-5` | ✅ | `medium` | Deep research | | `gpt-5-nano` | ✅ | `medium` | Balanced approach | | `o3` | ✅ | `medium` | Advanced reasoning | | `o4-mini` | ✅ | `medium` | Efficient reasoning | ## 📦 Installation ### Using uvx (Recommended) ```bash # Install and run directly uvx openai-websearch-mcp # Or install globally uvx install openai-websearch-mcp ``` ### Using pip ```bash # Install from PyPI pip install openai-websearch-mcp # Run the server python -m openai_websearch_mcp ``` ### From Source ```bash # Clone the repository git clone https://github.com/yourusername/openai-websearch-mcp.git cd openai-websearch-mcp # Install dependencies uv sync # Run in development mode uv run python -m openai_websearch_mcp ``` ## 👩‍💻 Development ### Setup Development Environment ```bash # Clone and setup git clone https://github.com/yourusername/openai-websearch-mcp.git cd openai-websearch-mcp # Create virtual environment and install dependencies uv sync # Run tests uv run python -m pytest # Install in development mode uv pip install -e . ``` ### Environment Variables | Variable | Description | Default | |----------|-------------|---------| | `OPENAI_API_KEY` | Your OpenAI API key | *Required* | | `OPENAI_DEFAULT_MODEL` | Default model to use | `gpt-5-mini` | ## 🐛 Debugging ### Using MCP Inspector ```bash # For uvx installations npx @modelcontextprotocol/inspector uvx openai-websearch-mcp # For pip installations npx @modelcontextprotocol/inspector python -m openai_websearch_mcp ``` ### Common Issues **Issue**: "Unsupported parameter: 'reasoning.effort'" **Solution**: This occurs when using non-reasoning models (gpt-4o, gpt-4o-mini) with reasoning_effort parameter. The server automatically handles this by only applying reasoning parameters to compatible models. **Issue**: "No module named 'openai_websearch_mcp'" **Solution**: Ensure you've installed the package correctly and your Python path includes the package location. ## 📄 License This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details. ## 🙏 Acknowledgments - 🤖 Generated with [Claude Code](https://claude.ai/code) - 🔥 Powered by [OpenAI's Web Search API](https://openai.com) - 🛠️ Built on the [Model Context Protocol](https://modelcontextprotocol.io/) --- **Co-Authored-By**: Claude <noreply@anthropic.com>

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/ConechoAI/openai-websearch-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server