Genkit MCP

Official
Apache 2.0
134
1,176
/** * Copyright 2024 Google LLC * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ import { CachedContent, StartChatParams } from '@google/generative-ai'; import { CachedContentCreateParams, GoogleAICacheManager, } from '@google/generative-ai/server'; import { GenerateRequest, GenkitError, z } from 'genkit'; import { logger } from 'genkit/logging'; import type { CacheConfigDetails } from './types.js'; import { calculateTTL, generateCacheKey, getContentForCache, lookupContextCache, validateContextCacheRequest, } from './utils.js'; /** * Handles context caching and transforms the chatRequest * @param apiKey * @param request * @param chatRequest * @param modelVersion * @returns */ export async function handleContextCache( apiKey: string, request: GenerateRequest<z.ZodTypeAny>, chatRequest: StartChatParams, modelVersion: string, cacheConfigDetails: CacheConfigDetails ): Promise<{ cache: CachedContent; newChatRequest: StartChatParams }> { const cacheManager = new GoogleAICacheManager(apiKey); const { cachedContent, chatRequest: newChatRequest } = getContentForCache( request, chatRequest, modelVersion, cacheConfigDetails ); cachedContent.model = modelVersion; const cacheKey = generateCacheKey(cachedContent); cachedContent.displayName = cacheKey; let cache = await lookupContextCache(cacheManager, cacheKey); logger.debug(`Cache hit: ${cache ? 'true' : 'false'}`); if (!cache) { try { logger.debug('No cache found, creating one.'); const createParams: CachedContentCreateParams = { ...cachedContent, ttlSeconds: calculateTTL(cacheConfigDetails), }; cache = await cacheManager.create(createParams); logger.debug(`Created new cache entry with key: ${cacheKey}`); } catch (cacheError) { logger.error( `Failed to create cache with key ${cacheKey}: ${cacheError}` ); throw new GenkitError({ status: 'INTERNAL', message: `Failed to create cache: ${cacheError}`, }); } } if (!cache) { throw new GenkitError({ status: 'INTERNAL', message: 'Failed to use context cache feature', }); } return { cache, newChatRequest }; } /** * Handles cache validation, creation, and usage, transforming the chatRequest if necessary. * @param apiKey The API key for accessing Google AI Gemini. * @param request The generate request passed to the model. * @param chatRequest The current chat request configuration. * @param modelVersion The version of the model being used. * @param cacheConfigDetails Configuration details for caching. * @returns A transformed chat request and cache data (if applicable). */ export async function handleCacheIfNeeded( apiKey: string, request: GenerateRequest<z.ZodTypeAny>, chatRequest: StartChatParams, modelVersion: string, cacheConfigDetails: CacheConfigDetails | null ): Promise<{ chatRequest: StartChatParams; cache: CachedContent | null }> { // Skip caching if no configuration or if validation fails if ( !cacheConfigDetails || !validateContextCacheRequest(request, modelVersion) ) { return { chatRequest, cache: null }; } const { cache, newChatRequest } = await handleContextCache( apiKey, request, chatRequest, modelVersion, cacheConfigDetails ); return { chatRequest: newChatRequest, cache }; }