Xano MCP Server
by SarimSiddd
- docs
# Titan Memory MCP Server API Documentation
## Overview
The Titan Memory MCP Server provides a neural memory system that can learn and predict sequences while maintaining state through a memory vector. This document details the available tools and their usage.
## Connection
### Cursor Integration
To use the server with Cursor IDE:
1. Install the server:
```bash
npm install -g @henryhawke/mcp-titan
```
2. Add to Cursor's MCP configuration (`~/.cursor/settings.json`):
```json
{
"mcp": {
"servers": {
"titan-memory": {
"command": "mcp-titan",
"env": {
"NODE_ENV": "production"
}
}
}
}
}
```
3. Restart Cursor IDE
4. Use `Cmd/Ctrl + Shift + P` and type "MCP: Restart Servers" to initialize
## Available Tools
### process_input
Process text input and update the memory state.
#### Parameters
```typescript
{
text: string; // Required: Input text to process
context?: string; // Optional: Additional context
}
```
#### Response
```typescript
{
surprise: number; // Surprise level (0-1)
memoryUpdated: boolean; // Whether memory was updated
insight: string; // Human-readable insight
}
```
#### Example
```typescript
const result = await callTool("process_input", {
text: "function calculateSum(a, b) { return a + b; }",
context: "JavaScript arithmetic function",
});
```
### get_memory_state
Retrieve the current memory state and statistics.
#### Parameters
None required.
#### Response
```typescript
{
memoryStats: {
mean: number; // Mean of memory vector
std: number; // Standard deviation
}
memorySize: number; // Size of memory vector
status: string; // Current status
}
```
#### Example
```typescript
const state = await callTool("get_memory_state", {});
```
## HTTP API
The server also exposes HTTP endpoints for non-MCP integrations.
### GET /
Returns server information and status.
#### Response
```json
{
"name": "Titan Memory MCP Server",
"version": "0.1.0",
"description": "Automatic memory-augmented learning for Cursor",
"status": "active",
"memoryPath": "~/.cursor/titan-memory"
}
```
### POST /mcp
MCP protocol endpoint for tool execution.
#### Request
```json
{
"jsonrpc": "2.0",
"method": "tools/call",
"params": {
"name": "process_input",
"arguments": {
"text": "Sample input text"
}
},
"id": 1
}
```
## Error Handling
The server uses standard MCP error codes:
- `INVALID_REQUEST`: Malformed request
- `METHOD_NOT_FOUND`: Unknown tool requested
- `INVALID_PARAMS`: Invalid tool parameters
- `INTERNAL_ERROR`: Server-side error
Example error response:
```json
{
"jsonrpc": "2.0",
"error": {
"code": -32602,
"message": "Invalid params: text is required"
},
"id": 1
}
```
## Memory Management
The server automatically:
- Saves memory state every 5 minutes
- Persists memory to `~/.cursor/titan-memory/memory.json`
- Cleans up tensors to prevent memory leaks
- Handles process termination gracefully
## Performance Considerations
- Memory vector size: 768 dimensions
- Auto-save interval: 5 minutes
- Uses TensorFlow.js for efficient tensor operations
- Dynamic port allocation for HTTP server
## Security Notes
- Server runs locally only
- File access restricted to `~/.cursor/titan-memory`
- No external network calls
- Environment variables sanitized
## Debugging
Enable debug logging:
```bash
DEBUG=mcp-titan* mcp-titan
```
Log files location:
- Server logs: `~/.cursor/titan-memory/logs/server.log`
- Memory state: `~/.cursor/titan-memory/memory.json`