Lightdash MCP Server
by syucream
# lightdash-mcp-server
[](https://smithery.ai/server/@syucream/lightdash-mcp-server)
A [MCP(Model Context Protocol)](https://www.anthropic.com/news/model-context-protocol) server that accesses to [Lightdash](https://www.lightdash.com/).
This server provides MCP-compatible access to Lightdash's API, allowing AI assistants to interact with your Lightdash data through a standardized interface.
<a href="https://glama.ai/mcp/servers/e1gbb6sflq">
<img width="380" height="200" src="https://glama.ai/mcp/servers/e1gbb6sflq/badge" alt="Lightdash Server MCP server" />
</a>
## Features
Available tools:
- `list_projects` - List all projects in the Lightdash organization
- `get_project` - Get details of a specific project
- `list_spaces` - List all spaces in a project
- `list_charts` - List all charts in a project
- `list_dashboards` - List all dashboards in a project
- `get_custom_metrics` - Get custom metrics for a project
- `get_catalog` - Get catalog for a project
- `get_metrics_catalog` - Get metrics catalog for a project
- `get_charts_as_code` - Get charts as code for a project
- `get_dashboards_as_code` - Get dashboards as code for a project
## Quick Start
### Installation
#### Installing via Smithery
To install Lightdash MCP Server for Claude Desktop automatically via [Smithery](https://smithery.ai/server/@syucream/lightdash-mcp-server):
```bash
npx -y @smithery/cli install @syucream/lightdash-mcp-server --client claude
```
#### Manual Installation
```bash
npm install lightdash-mcp-server
```
### Configuration
Create a `.env` file with your Lightdash API credentials:
```env
LIGHTDASH_API_KEY=your_api_key
LIGHTDASH_API_URL=https://app.lightdash.cloud/api/v1 # or your custom Lightdash instance URL
```
### Usage
1. Start the MCP server:
```bash
npx lightdash-mcp-server
```
2. For example usage, check the `examples` directory. To run the example:
```bash
# Set required environment variables
export EXAMPLES_CLIENT_LIGHTDASH_API_KEY=your_api_key
export EXAMPLES_CLIENT_LIGHTDASH_PROJECT_UUID=your_project_uuid
# Run the example
npm run examples
```
## Development
### Available Scripts
- `npm run dev` - Start the server in development mode with hot reloading
- `npm run build` - Build the project for production
- `npm run start` - Start the production server
- `npm run lint` - Run linting checks (ESLint and Prettier)
- `npm run fix` - Automatically fix linting issues
- `npm run examples` - Run the example scripts
### Contributing
1. Fork the repository
2. Create your feature branch
3. Run tests and linting: `npm run lint`
4. Commit your changes
5. Push to the branch
6. Create a Pull Request