Skip to main content
Glama
retention_time_conversion_example.md3.76 kB
# Retention Analysis with Time Conversion Example This document demonstrates how the optimized retention analysis works with proper time conversion. ## Key Improvements ### 1. Enhanced `get_video_retention` Tool The tool now automatically: - Fetches video duration from metadata - Converts percentiles to actual timestamps - Provides both formats for maximum clarity ### 2. Example Output from `get_video_retention` ```json { "video": { "id": "1_3atosphg", "title": "Introduction to Python Programming", "duration_seconds": 1200, "duration_formatted": "20:00" }, "retention_data": [ { "percentile": 0, "time_seconds": 0, "time_formatted": "00:00", "viewers": 1000, "unique_users": 1000, "retention_percentage": 100.0, "replays": 0 }, { "percentile": 10, "time_seconds": 120, "time_formatted": "02:00", "viewers": 850, "unique_users": 800, "retention_percentage": 85.0, "replays": 50 }, { "percentile": 25, "time_seconds": 300, "time_formatted": "05:00", "viewers": 650, "unique_users": 640, "retention_percentage": 65.0, "replays": 10 }, { "percentile": 50, "time_seconds": 600, "time_formatted": "10:00", "viewers": 450, "unique_users": 445, "retention_percentage": 45.0, "replays": 5 } ], "insights": { "average_retention": 65.5, "completion_rate": 38.0, "fifty_percent_point": "08:30", "major_dropoffs": [ { "time": "02:00", "time_seconds": 120, "percentile": 10, "retention_loss": 15.0 }, { "time": "05:00", "time_seconds": 300, "percentile": 25, "retention_loss": 20.0 } ], "replay_hotspots": [ { "time": "02:00", "time_seconds": 120, "percentile": 10, "replay_rate": 0.06 } ] } } ``` ### 3. Optimized Prompt Instructions The retention_analysis prompt now explicitly instructs: - **X-axis MUST use time_formatted** (MM:SS format) - **Never use percentiles on the X-axis** - Data already includes time conversion - All recommendations reference timestamps ### 4. Clear Graph Instructions When the LLM creates the retention curve: ``` X-axis: Video time from 00:00 to 20:00 Y-axis: Retention percentage (0-100%) Each data point plots: - X: time_formatted (e.g., "02:00", "05:00", "10:00") - Y: retention_percentage (e.g., 85.0, 65.0, 45.0) ``` ## Benefits of This Approach 1. **No Confusion**: LLMs receive pre-calculated time values 2. **Accurate Visualization**: X-axis always shows actual video time 3. **Easy Correlation**: Drop-offs linked to specific moments in the video 4. **Better Insights**: "Users drop off at 2:00" vs "Users drop off at 10th percentile" ## Example LLM Response With these improvements, the LLM will generate reports like: **Retention Analysis for "Introduction to Python Programming"** 📊 **Retention Curve** ``` 100% |• | • 85% | • | • 65% | • | • 45% | • |________________•___ 0:00 5:00 10:00 15:00 20:00 Video Time (MM:SS) ``` **Major Drop-offs:** - **02:00** - 15% viewer loss (Introduction ends, main content begins) - **05:00** - 20% viewer loss (Complex topic introduction) **Recommendations:** 1. Add a preview at **01:45** to retain viewers before the 02:00 drop 2. Break down the complex topic at **04:45** with simpler examples 3. Consider adding chapter markers at **05:00**, **10:00**, and **15:00** This clear time-based approach ensures that everyone understands exactly when events occur in the video!

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/zoharbabin/kaltura-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server