Skip to main content
Glama

MCP Server for Apache Airflow

by yangkyeongmo
plugin.py1.22 kB
from typing import Any, Callable, Dict, List, Optional, Union import mcp.types as types from airflow_client.client.api.plugin_api import PluginApi from src.airflow.airflow_client import api_client plugin_api = PluginApi(api_client) def get_all_functions() -> list[tuple[Callable, str, str, bool]]: """Return list of (function, name, description, is_read_only) tuples for registration.""" return [ (get_plugins, "get_plugins", "Get a list of loaded plugins", True), ] async def get_plugins( limit: Optional[int] = None, offset: Optional[int] = None, ) -> List[Union[types.TextContent, types.ImageContent, types.EmbeddedResource]]: """ Get a list of loaded plugins. Args: limit: The numbers of items to return. offset: The number of items to skip before starting to collect the result set. Returns: A list of loaded plugins. """ # Build parameters dictionary kwargs: Dict[str, Any] = {} if limit is not None: kwargs["limit"] = limit if offset is not None: kwargs["offset"] = offset response = plugin_api.get_plugins(**kwargs) return [types.TextContent(type="text", text=str(response.to_dict()))]

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/yangkyeongmo/mcp-server-apache-airflow'

If you have feedback or need assistance with the MCP directory API, please join our Discord server