Skip to main content
Glama
wlmwwx
by wlmwwx

deduplicate_images

Identify and filter out visually similar images to obtain a diverse subset using semantic analysis. This tool helps manage large image collections by removing duplicates based on visual content.

Instructions

Get top-k semantically unique images (URLs or base64-encoded) using Jina CLIP v2 embeddings and submodular optimization. Use this when you have many visually similar images and want the most diverse subset.

Input Schema

TableJSON Schema
NameRequiredDescriptionDefault
imagesYesArray of image inputs to deduplicate. Each item can be either an HTTP(S) URL or a raw base64-encoded image string (without data URI prefix).
kNoNumber of unique images to return. If not provided, automatically finds optimal k by looking at diminishing return

Implementation Reference

  • Main execution logic for deduplicate_images tool: validates input, fetches Jina CLIP v2 embeddings, applies submodular selection (lazyGreedySelection or with saturation), downloads HTTP images using downloadImages utility, handles base64 directly, returns content items or error.
    async ({ images, k }: { images: string[]; k?: number }) => { try { const props = getProps(); const tokenError = checkBearerToken(props.bearerToken); if (tokenError) { return tokenError; } if (images.length === 0) { throw new Error("No images provided for deduplication"); } if (k !== undefined && (k <= 0 || k > images.length)) { throw new Error(`Invalid k value: ${k}. Must be between 1 and ${images.length}`); } // Prepare input for image embeddings API const embeddingInput = images.map((img) => ({ image: img })); // Get image embeddings from Jina API using CLIP v2 const response = await fetch('https://api.jina.ai/v1/embeddings', { method: 'POST', headers: { 'Accept': 'application/json', 'Content-Type': 'application/json', 'Authorization': `Bearer ${props.bearerToken}`, }, body: JSON.stringify({ model: 'jina-clip-v2', input: embeddingInput, }), }); if (!response.ok) { return handleApiError(response, "Getting image embeddings"); } const data = await response.json() as any; if (!data.data || !Array.isArray(data.data)) { throw new Error("Invalid response format from embeddings API"); } // Extract embeddings const embeddings = data.data.map((item: any) => item.embedding); // Use submodular optimization to select diverse images let selectedIndices: number[]; let values: number[]; if (k !== undefined) { selectedIndices = lazyGreedySelection(embeddings, k); values = []; } else { const result = lazyGreedySelectionWithSaturation(embeddings); selectedIndices = result.selected; values = result.values; } // Get the selected images const selectedImages = selectedIndices.map((idx) => ({ index: idx, source: images[idx] })); // Use our consolidated downloadImages utility for consistency const urlsToDownload = selectedImages .filter(({ source }) => /^https?:\/\//i.test(source)) .map(({ source }) => source); const base64Images = selectedImages .filter(({ source }) => !/^https?:\/\//i.test(source)) .map(({ source }) => source); const contentItems: Array<{ type: 'image'; data: string; mimeType: string } | { type: 'text'; text: string }> = []; // Download URLs using our utility if (urlsToDownload.length > 0) { const downloadResults = await downloadImages(urlsToDownload, 3, 15000); for (let i = 0; i < downloadResults.length; i++) { const result = downloadResults[i]; const selectedImage = selectedImages.find(({ source }) => source === urlsToDownload[i]); if (result.success && result.data) { contentItems.push({ type: 'image' as const, data: result.data, mimeType: result.mimeType, }); } else { contentItems.push({ type: 'text' as const, text: `Failed to download image at index ${selectedImage?.index || i}: ${result.error || 'Unknown error'}`, }); } } } // Add base64 images directly for (const base64Image of base64Images) { contentItems.push({ type: 'image' as const, data: base64Image, mimeType: 'image/jpeg', // Our utility converts to JPEG }); } if (contentItems.length === 0) { throw new Error("No images to return after deduplication"); } return { content: contentItems }; } catch (error) { return createErrorResponse(`Error: ${error instanceof Error ? error.message : String(error)}`); } },
  • Input schema using Zod: array of image strings (URLs or base64), optional k for number of unique images.
    { images: z.array(z.string()).describe("Array of image inputs to deduplicate. Each item can be either an HTTP(S) URL or a raw base64-encoded image string (without data URI prefix)."), k: z.number().optional().describe("Number of unique images to return. If not provided, automatically finds optimal k by looking at diminishing return"), },
  • Registers the deduplicate_images tool on the MCP server with name, description, schema, and handler.
    server.tool(
  • Core submodular optimization helper: lazy greedy selection of k diverse items using cosine similarity and facility location objective (used when k specified).
    export function lazyGreedySelection(embeddings: number[][], k: number): number[] { const n = embeddings.length; if (k >= n) return Array.from({ length: n }, (_, i) => i); const selected: number[] = []; const remaining = new Set(Array.from({ length: n }, (_, i) => i)); // Pre-compute similarity matrix const similarityMatrix: number[][] = []; for (let i = 0; i < n; i++) { similarityMatrix[i] = []; for (let j = 0; j < n; j++) { // Clamp to non-negative to ensure monotone submodularity of facility-location objective const sim = cosineSimilarity(embeddings[i], embeddings[j]); similarityMatrix[i][j] = sim > 0 ? sim : 0; } } // Maintain current coverage vector (max similarity to selected set for each element) const currentCoverage = new Array(n).fill(0); // Priority queue implementation using array (simplified) const pq: Array<[number, number, number]> = []; // Initialize priority queue for (let i = 0; i < n; i++) { const gain = computeMarginalGainDiversity(i, currentCoverage, similarityMatrix); pq.push([-gain, 0, i]); } // Sort by gain (descending) pq.sort((a, b) => a[0] - b[0]); for (let iteration = 0; iteration < k; iteration++) { while (pq.length > 0) { const [negGain, lastUpdated, bestIdx] = pq.shift()!; if (!remaining.has(bestIdx)) continue; if (lastUpdated === iteration) { selected.push(bestIdx); remaining.delete(bestIdx); // Update coverage in O(n) const row = similarityMatrix[bestIdx]; for (let i = 0; i < n; i++) { if (row[i] > currentCoverage[i]) currentCoverage[i] = row[i]; } break; } const currentGain = computeMarginalGainDiversity(bestIdx, currentCoverage, similarityMatrix); pq.push([-currentGain, iteration, bestIdx]); pq.sort((a, b) => a[0] - b[0]); } } return selected; }
  • Submodular optimization helper: auto-detects optimal k by continuing greedy selection until marginal gain saturates (used when k not specified).
    export function lazyGreedySelectionWithSaturation( embeddings: number[][], threshold: number = 1e-2 ): { selected: number[], optimalK: number, values: number[] } { const n = embeddings.length; const selected: number[] = []; const remaining = new Set(Array.from({ length: n }, (_, i) => i)); const values: number[] = []; // Pre-compute similarity matrix const similarityMatrix: number[][] = []; for (let i = 0; i < n; i++) { similarityMatrix[i] = []; for (let j = 0; j < n; j++) { const sim = cosineSimilarity(embeddings[i], embeddings[j]); similarityMatrix[i][j] = sim > 0 ? sim : 0; } } const currentCoverage = new Array(n).fill(0); // Priority queue implementation using array (simplified) const pq: Array<[number, number, number]> = []; // Initialize priority queue for (let i = 0; i < n; i++) { const gain = computeMarginalGainDiversity(i, currentCoverage, similarityMatrix); pq.push([-gain, 0, i]); } // Sort by gain (descending) pq.sort((a, b) => a[0] - b[0]); let earlyStopK: number | null = null; for (let iteration = 0; iteration < n; iteration++) { while (pq.length > 0) { const [negGain, lastUpdated, bestIdx] = pq.shift()!; if (!remaining.has(bestIdx)) continue; if (lastUpdated === iteration) { selected.push(bestIdx); remaining.delete(bestIdx); // Compute current function value (coverage) const row = similarityMatrix[bestIdx]; for (let i = 0; i < n; i++) { if (row[i] > currentCoverage[i]) currentCoverage[i] = row[i]; } const functionValue = currentCoverage.reduce((sum, val) => sum + val, 0) / n; values.push(functionValue); // Early stop when the marginal gain (delta of normalized objective) falls below threshold if (values.length >= 2) { const delta = values[values.length - 1] - values[values.length - 2]; if (delta < threshold) { earlyStopK = values.length; // k is count of selected items } } break; } const currentGain = computeMarginalGainDiversity(bestIdx, currentCoverage, similarityMatrix); pq.push([-currentGain, iteration, bestIdx]); pq.sort((a, b) => a[0] - b[0]); } if (earlyStopK !== null) break; } // Choose k: prefer early stop detection; otherwise, use all collected values const optimalK = earlyStopK ?? values.length; const finalSelected = selected.slice(0, optimalK); return { selected: finalSelected, optimalK, values }; }

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/wlmwwx/jina-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server