Skip to main content
Glama

OpenRouter Agents MCP Server

by wheattoast11

OpenRouter Agents MCP Server

[UPDATE – 2025-08-26] Two modes (set MODE env):

  • AGENT: one simple tool (agent) that routes research / follow_up / retrieve / query
  • MANUAL: individual tools for each action
  • ALL (default): both AGENT and MANUAL, plus always-on ops tools

Diagram (simple)

[Always-On Ops] ping • get_server_status • job_status • cancel_job AGENT MODE client → agent → (research | follow_up | retrieve | query) MANUAL MODE client → (submit_research | conduct_research | retrieve | query | research_follow_up | get_report_content | list_research_history)
  • Killer features
    • Plan → parallelize → synthesize workflow with bounded parallelism
    • Dynamic model catalog; supports Anthropic Sonnet‑4 and OpenAI GPT‑5 family
    • Built‑in semantic KB (PGlite + pgvector) with backup, export/import, health, and reindex tools
    • Lightweight web helpers: quick search and page fetch for context
    • Robust streaming (SSE), per‑connection auth, clean logs

Install / Run

  • Install (project dependency)
npm install @terminals-tech/openrouter-agents
  • Global install (optional)
npm install -g @terminals-tech/openrouter-agents
  • Run with npx (no install)
npx @terminals-tech/openrouter-agents --stdio # or daemon SERVER_API_KEY=devkey npx @terminals-tech/openrouter-agents

What’s new (v1.5.0)

  • Version parity across npm, GitHub Releases, and GitHub Packages
  • Dual publish workflow enabled

Changelog →

Quick start

  1. Prereqs
  • Node 18+ (20 LTS recommended), npm, Git, OpenRouter API key
  1. Install
npm install
  1. Configure (.env)
OPENROUTER_API_KEY=your_openrouter_key SERVER_API_KEY=your_http_transport_key SERVER_PORT=3002 # Modes (pick one; default ALL) # AGENT = agent-only + always-on ops (ping/status/jobs) # MANUAL = individual tools + always-on ops # ALL = agent + individual tools + always-on ops MODE=ALL # Orchestration ENSEMBLE_SIZE=2 PARALLELISM=4 # Models (override as needed) - Updated with state-of-the-art cost-effective models PLANNING_MODEL=openai/gpt-5-chat PLANNING_CANDIDATES=openai/gpt-5-chat,google/gemini-2.5-pro,anthropic/claude-sonnet-4 HIGH_COST_MODELS=x-ai/grok-4,openai/gpt-5-chat,google/gemini-2.5-pro,anthropic/claude-sonnet-4,morph/morph-v3-large LOW_COST_MODELS=deepseek/deepseek-chat-v3.1,z-ai/glm-4.5v,qwen/qwen3-coder,openai/gpt-5-mini,google/gemini-2.5-flash VERY_LOW_COST_MODELS=openai/gpt-5-nano,deepseek/deepseek-chat-v3.1 # Storage PGLITE_DATA_DIR=./researchAgentDB PGLITE_RELAXED_DURABILITY=true REPORT_OUTPUT_PATH=./research_outputs/ # Indexer INDEXER_ENABLED=true INDEXER_AUTO_INDEX_REPORTS=true INDEXER_AUTO_INDEX_FETCHED=true # MCP features MCP_ENABLE_PROMPTS=true MCP_ENABLE_RESOURCES=true # Prompt strategy PROMPTS_COMPACT=true PROMPTS_REQUIRE_URLS=true PROMPTS_CONFIDENCE=true
  1. Run
  • STDIO (for Cursor/VS Code MCP):
node src/server/mcpServer.js --stdio
  • HTTP/SSE (local daemon):
SERVER_API_KEY=$SERVER_API_KEY node src/server/mcpServer.js

Windows PowerShell examples

  • STDIO
$env:OPENROUTER_API_KEY='your_key' $env:INDEXER_ENABLED='true' node src/server/mcpServer.js --stdio
  • HTTP/SSE
$env:OPENROUTER_API_KEY='your_key' $env:SERVER_API_KEY='devkey' $env:SERVER_PORT='3002' node src/server/mcpServer.js

One-liner demo scripts

Dev (HTTP/SSE):

SERVER_API_KEY=devkey INDEXER_ENABLED=true node src/server/mcpServer.js

STDIO (Cursor/VS Code):

OPENROUTER_API_KEY=your_key INDEXER_ENABLED=true node src/server/mcpServer.js --stdio

MCP client JSON configuration (no manual start required)

You can register this server directly in MCP clients that support JSON server manifests.

Minimal examples:

  1. STDIO transport (recommended for IDEs)
{ "servers": { "openrouter-agents": { "command": "npx", "args": ["@terminals-tech/openrouter-agents", "--stdio"], "env": { "OPENROUTER_API_KEY": "${OPENROUTER_API_KEY}", "SERVER_API_KEY": "${SERVER_API_KEY}", "PGLITE_DATA_DIR": "./researchAgentDB", "INDEXER_ENABLED": "true" } } } }
  1. HTTP/SSE transport (daemon mode)
{ "servers": { "openrouter-agents": { "url": "http://127.0.0.1:3002", "sse": "/sse", "messages": "/messages", "headers": { "Authorization": "Bearer ${SERVER_API_KEY}" } } } }

With the package installed globally (or via npx), MCP clients can spawn the server automatically. See your client’s docs for where to place this JSON (e.g., ~/.config/client/mcp.json).

Tools (high‑value)

  • Always‑on (all modes): ping, get_server_status, job_status, get_job_status, cancel_job
  • AGENT: agent (single entrypoint for research / follow_up / retrieve / query)
  • MANUAL/ALL toolset: submit_research (async), conduct_research (sync/stream), research_follow_up, search (hybrid), retrieve (index/sql), query (SELECT), get_report_content, list_research_history
  • Jobs: get_job_status, cancel_job
  • Retrieval: search (hybrid BM25+vector with optional LLM rerank), retrieve (index/sql wrapper)
  • SQL: query (SELECT‑only, optional explain)
  • Knowledge base: get_past_research, list_research_history, get_report_content
  • DB ops: backup_db (tar.gz), export_reports, import_reports, db_health, reindex_vectors
  • Models: list_models
  • Web: search_web, fetch_url
  • Indexer: index_texts, index_url, search_index, index_status

Tool usage patterns (for LLMs)

Use tool_patterns resource to view JSON recipes describing effective chaining, e.g.:

  • Search → Fetch → Research
  • Async research: submit, stream via SSE /jobs/:id/events, then get report content

Notes

  • Data lives locally under PGLITE_DATA_DIR (default ./researchAgentDB). Backups are tarballs in ./backups.
  • Use list_models to discover current provider capabilities and ids.

Architecture at a glance

See docs/diagram-architecture.mmd (Mermaid). Render to SVG with Mermaid CLI if installed:

npx @mermaid-js/mermaid-cli -i docs/diagram-architecture.mmd -o docs/diagram-architecture.svg

Or use the script:

npm run gen:diagram

Architecture Diagram (branded)

If the image doesn’t render in your viewer, open docs/diagram-architecture-branded.svg directly.

Answer crystallization view

Answer Crystallization Diagram

How it differs from typical “agent chains”:

  • Not just hardcoded handoffs; the plan is computed, then parallel agents search, then a synthesis step reasons over consensus, contradictions, and gaps.
  • The system indexes what it reads during research, so subsequent queries get faster/smarter.
  • Guardrails shape attention: explicit URL citations, [Unverified] labelling, and confidence scoring.

Minimal‑token prompt strategy

  • Compact mode strips preambles to essential constraints; everything else is inferred.
  • Enforced rules: explicit URL citations, no guessing IDs/URLs, confidence labels.
  • Short tool specs: use concise param names and rely on server defaults.

Common user journeys

  • “Give me an executive briefing on MCP status as of July 2025.”
    • Server plans sub‑queries, fetches authoritative sources, synthesizes with citations.
    • Indexed outputs make related follow‑ups faster.
  • “Find vision‑capable models and route images gracefully.”
    • /models discovered and filtered, router template generated, fallback to text models.
  • “Compare orchestration patterns for bounded parallelism.”
    • Pulls OTel/Airflow/Temporal docs, produces a MECE synthesis and code pointers.

Cursor IDE usage

  • Add this server in Cursor MCP settings pointing to node src/server/mcpServer.js --stdio.
  • Use the new prompts (planning_prompt, synthesis_prompt) directly in Cursor to scaffold tasks.

FAQ (quick glance)

  • How does it avoid hallucinations?
    • Strict citation rules, [Unverified] labels, retrieval of past work, on‑the‑fly indexing.
  • Can I disable features?
    • Yes, via env flags listed above.
  • Does it support streaming?
    • Yes, SSE for HTTP; stdio for MCP.

Command Map (quick reference)

  • Start (stdio): npm run stdio
  • Start (HTTP/SSE): npm start
  • Run via npx (scoped): npx @terminals-tech/openrouter-agents --stdio
  • Generate examples: npm run gen:examples
  • List models: MCP list_models { refresh:false }
  • Submit research (async): submit_research { q:"<query>", cost:"low", aud:"intermediate", fmt:"report", src:true }
  • Track job: get_job_status { job_id:"..." }, cancel: cancel_job { job_id:"..." }
  • Unified search: search { q:"<query>", k:10, scope:"both" }
  • SQL (read‑only): query { sql:"SELECT ... WHERE id = $1", params:[1], explain:true }
  • Get past research: get_past_research { query:"<query>", limit:5 }
  • Index URL (if enabled): index_url { url:"https://..." }
  • Micro UI (ghost): visit http://localhost:3002/ui to stream job events (SSE).

Package publishing

  • Name: @terminals-tech/openrouter-agents
  • Version: 1.3.2
  • Bin: openrouter-agents
  • Author: Tej Desai admin@terminals.tech
  • Homepage: https://terminals.tech

Install and run without cloning:

npx @terminals-tech/openrouter-agents --stdio # or daemon SERVER_API_KEY=your_key npx @terminals-tech/openrouter-agents

Publish (scoped)

npm login npm version 1.3.2 -m "chore(release): %s" git push --follow-tags npm publish --access public --provenance

Validation – MSeeP (Multi‑Source Evidence & Evaluation Protocol)

  • Citations enforced: explicit URLs, confidence tags; unknowns marked [Unverified].
  • Cross‑model triangulation: plan fans out to multiple models; synthesis scores consensus vs contradictions.
  • KB grounding: local hybrid index (BM25+vector) retrieves past work for cross‑checking.
  • Human feedback: rate_research_report { rating, comment } stored to DB; drives follow‑ups.
  • Reproducibility: export_reports + backup_db capture artifacts for audit.

Quality feedback loop

  • Run examples: npm run gen:examples
  • Review: list_research_history, get_report_content {reportId}
  • Rate: rate_research_report { reportId, rating:1..5, comment }
  • Improve retrieval: reindex_vectors, index_status, search_index { query }

Architecture diagram (branded)

  • See docs/diagram-architecture-branded.svg (logo links to https://terminals.tech).

Stargazers

-
security - not tested
F
license - not found
-
quality - not tested

remote-capable server

The server can be hosted and run remotely because it primarily relies on remote services or has no dependency on the local environment.

A Model Context Protocol server that enables conversational LLMs to delegate complex research tasks to specialized AI agents powered by various OpenRouter models, coordinated by a Claude orchestrator.

  1. 🚀 New Beta Branch (03-29-2025)
    1. OpenRouter Agents MCP Server Technical Overview
  2. 🌟 Support This Project
    1. Prerequisites
      1. Features
        1. How It Works
          1. Installation (Node.js / Standard)
            1. Cline / VS Code MCP Integration (Recommended)
              1. Available Models
                1. High-Cost Models
                2. Low-Cost Models
              2. Customization
                1. Alternative Installation: HTTP/SSE for Claude Desktop App
                  1. HTTP/SSE Installation Steps
                  2. Claude Desktop App Integration (HTTP/SSE)
                2. Persistence & Data Storage
                  1. Troubleshooting
                    1. Advanced Configuration
                      1. Authentication Security
                    2. Testing Tools
                      1. License

                        Related MCP Servers

                        • -
                          security
                          F
                          license
                          -
                          quality
                          A Model Context Protocol server that enables Claude users to access specialized OpenAI agents (web search, file search, computer actions) and a multi-agent orchestrator through the MCP protocol.
                          Last updated -
                          9
                          • Linux
                          • Apple
                        • -
                          security
                          -
                          license
                          -
                          quality
                          A Model Context Protocol server that enables intelligent task delegation from advanced AI agents like Claude 3.7 to cost-effective LLMs, providing a comprehensive suite of tools spanning cognitive memory, browser automation, Excel manipulation, database interactions, and document processing.
                          Last updated -
                          107
                          MIT License
                        • A
                          security
                          A
                          license
                          A
                          quality
                          A Model Context Protocol server that scans and exposes AI-related dotfiles and configuration files to LLM agents, helping them understand project context and guidelines.
                          Last updated -
                          MIT License
                        • -
                          security
                          A
                          license
                          -
                          quality
                          A sophisticated server that coordinates multiple LLMs (Claude, Gemini, etc.) using the Model Context Protocol to enhance reasoning capabilities through strategies like progressive deep dive and consensus-based approaches.
                          Last updated -
                          MIT License
                          • Linux
                          • Apple

                        View all related MCP servers

                        MCP directory API

                        We provide all the information about MCP servers via our MCP API.

                        curl -X GET 'https://glama.ai/api/mcp/v1/servers/wheattoast11/openrouter-deep-research-mcp'

                        If you have feedback or need assistance with the MCP directory API, please join our Discord server