Skip to main content
Glama

MCP RAG System

A comprehensive Retrieval-Augmented Generation (RAG) system built using the Model Context Protocol (MCP) for storing, processing, and searching PDF documents.

Features

πŸ”§ Tools

  • upload_pdf: Upload and process PDF files with automatic text extraction and chunking

  • search_documents: Semantic search across all uploaded documents using vector embeddings

  • list_documents: View all uploaded documents and their metadata

  • delete_document: Remove documents and their associated chunks from the system

  • get_rag_stats: Get comprehensive statistics about the RAG system

πŸ“¦ Resources

  • rag://documents: List all documents in the system

  • rag://document/{document_id}: Get full content of a specific document

  • rag://stats: Get system statistics

πŸ’¬ Prompts

  • rag_query_prompt: Generate prompts for RAG-based question answering

  • document_summary_prompt: Create document summarization prompts

  • search_suggestions_prompt: Generate better search query suggestions

Installation

  1. Install dependencies:

    pip install -r requirements.txt
  2. Download required models: The system will automatically download the sentence-transformers model on first use.

Usage

Starting the Server

python mcp_server.py

The server will start on http://localhost:8000 with SSE (Server-Sent Events) transport.

Using the Client

Demo Mode

python mcp_client.py # Choose option 1 for demo mode

Interactive Mode

python mcp_client.py # Choose option 2 for interactive mode

Available commands in interactive mode:

  • upload - Upload a PDF file

  • search - Search documents with a query

  • list - List all uploaded documents

  • stats - Show system statistics

  • quit - Exit the client

Example Workflow

  1. Upload a PDF:

    # Via tool call result = await session.call_tool("upload_pdf", arguments={ "file_path": "/path/to/document.pdf", "document_name": "My Research Paper" })
  2. Search documents:

    # Via tool call result = await session.call_tool("search_documents", arguments={ "query": "machine learning applications", "top_k": 5 })
  3. Use RAG prompt:

    # Get search results first, then use in prompt prompt = await session.get_prompt("rag_query_prompt", arguments={ "query": "What are the key findings?", "context_chunks": search_results_text })

System Architecture

Document Processing Pipeline

  1. PDF Upload β†’ Text extraction using PyMuPDF/PyPDF2

  2. Text Chunking β†’ Split into overlapping chunks (1000 chars, 200 overlap)

  3. Embedding Generation β†’ Create vector embeddings using SentenceTransformers

  4. Storage β†’ Store in FAISS index with metadata

Storage Structure

rag_storage/ β”œβ”€β”€ documents/ # Original extracted text β”œβ”€β”€ chunks/ # Individual text chunks β”œβ”€β”€ embeddings/ # Numpy arrays of embeddings β”œβ”€β”€ faiss_index.bin # FAISS vector index └── metadata.json # Document and chunk metadata
  • Model: all-MiniLM-L6-v2 (384-dimensional embeddings)

  • Index: FAISS IndexFlatIP (Inner Product similarity)

  • Search: Cosine similarity for semantic matching

Configuration

Chunk Settings

Modify in mcp_server.py:

def _create_text_chunks(text: str, chunk_size: int = 1000, overlap: int = 200):

Embedding Model

Change the model in RAGSystem.__init__():

self.embedding_model = SentenceTransformer('all-MiniLM-L6-v2')

Storage Location

Set custom storage directory:

rag_system = RAGSystem(storage_dir="custom_rag_storage")

API Reference

Tools

upload_pdf

  • Parameters: file_path (str), document_name (optional str)

  • Returns: Document ID, chunk count, success status

search_documents

  • Parameters: query (str), top_k (optional int, default 5)

  • Returns: Ranked list of relevant chunks with scores

list_documents

  • Parameters: None

  • Returns: List of all documents with metadata

delete_document

  • Parameters: document_id (str)

  • Returns: Success status and confirmation message

get_rag_stats

  • Parameters: None

  • Returns: System statistics (documents, chunks, storage size)

Resources

rag://documents

Returns formatted list of all documents in the system.

rag://document/{document_id}

Returns full text content of specified document with metadata header.

rag://stats

Returns formatted system statistics.

Prompts

rag_query_prompt

  • Parameters: query (str), context_chunks (str)

  • Returns: Structured prompt for RAG-based QA

document_summary_prompt

  • Parameters: document_content (str)

  • Returns: Prompt for document summarization

search_suggestions_prompt

  • Parameters: query (str), available_documents (str)

  • Returns: Prompt for generating better search queries

Performance Considerations

Memory Usage

  • Embeddings: ~1.5KB per chunk (384 float32 values)

  • FAISS index: Scales linearly with number of chunks

  • Text storage: Depends on document size and chunking

Search Speed

  • FAISS IndexFlatIP: O(n) search time

  • For large collections, consider IndexIVFFlat or IndexHNSW

Optimization Tips

  1. Batch uploads for multiple documents

  2. Adjust chunk size based on document type

  3. Use GPU with faiss-gpu for large datasets

  4. Implement caching for frequent queries

Troubleshooting

Common Issues

  1. PDF text extraction fails:

    • Ensure PDF is not password-protected

    • Try different PDF files to isolate the issue

    • Check PyMuPDF and PyPDF2 installation

  2. Memory errors with large documents:

    • Reduce chunk size

    • Process documents in batches

    • Monitor system memory usage

  3. Search returns no results:

    • Verify documents are uploaded successfully

    • Check query similarity to document content

    • Try broader search terms

  4. Server connection issues:

    • Ensure server is running on correct port

    • Check firewall settings

    • Verify MCP client configuration

Debug Mode

Enable detailed logging by modifying the server:

import logging logging.basicConfig(level=logging.DEBUG)

Contributing

  1. Fork the repository

  2. Create a feature branch

  3. Add tests for new functionality

  4. Submit a pull request

License

This project is licensed under the MIT License.

MCP

-
security - not tested
F
license - not found
-
quality - not tested

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/nitin-kumar101/MCP'

If you have feedback or need assistance with the MCP directory API, please join our Discord server