Skip to main content
Glama

MCP Stock Details Server

by whdghk1907
peer_comparison_tools.py13.5 kB
""" Peer Comparison Analysis Tools (TDD Green Phase) Implements minimum functionality to pass tests """ import asyncio import logging from typing import Dict, Any, List, Optional from datetime import datetime import statistics from ..exceptions import InsufficientDataError class PeerComparisonAnalyzer: """Analyzes peer companies for comparison""" def __init__(self): self.logger = logging.getLogger(__name__) async def get_peer_data(self, company_code: str) -> Dict[str, Any]: """Get peer comparison data for a company""" # Mock implementation for TDD Green phase if company_code == "005930": return { "company_info": { "name": "삼성전자", "market_cap": 450000000000000, "industry": "반도체", "sector": "정보기술" }, "peer_companies": [ { "company_code": "000660", "company_name": "SK하이닉스", "market_cap": 95000000000000, "similarity_score": 0.85 } ], "peer_metrics": { "revenue_2023": { "company": 302231000000000, "peer_avg": 180500000000000, "peer_median": 165000000000000, "percentile": 95 }, "operating_margin": { "company": 15.2, "peer_avg": 18.5, "peer_median": 17.8, "percentile": 35 } } } raise InsufficientDataError(f"Insufficient peer data for {company_code}") async def identify_peer_companies(self, company_data: Dict[str, Any], selection_method: str = "industry_focused", max_peers: int = 5) -> Dict[str, Any]: """Identify peer companies for comparison""" if selection_method not in ["industry_focused", "market_cap", "business_model"]: raise ValueError(f"Invalid selection method: {selection_method}") if max_peers < 0: raise ValueError("max_peers must be non-negative") return { "peer_companies": [ { "company_code": "000660", "company_name": "SK하이닉스", "similarity_score": 0.85 } ], "selection_criteria": { "industry_match": True, "size_similarity": True, "business_model_similarity": True }, "similarity_scores": [0.85] } async def compare_financial_metrics(self, company_data: Dict[str, Any], peer_data: List[Dict[str, Any]], metrics: List[str]) -> Dict[str, Any]: """Compare financial metrics with peers""" if not company_data.get("financial_metrics"): raise InsufficientDataError("Company financial metrics missing") return { "financial_comparison": { "operating_margin": { "company_value": 15.2, "peer_average": 18.5, "peer_median": 17.8, "percentile": 35 }, "roe": { "company_value": 8.6, "peer_average": 12.8, "peer_median": 11.5, "percentile": 25 } }, "peer_statistics": { "peer_count": len(peer_data), "metrics_compared": len(metrics) }, "percentile_ranks": { "operating_margin": 35, "roe": 25 } } async def analyze_valuation_metrics(self, company_data: Dict[str, Any], peer_data: List[Dict[str, Any]]) -> Dict[str, Any]: """Analyze valuation metrics vs peers""" return { "valuation_comparison": { "per": { "company_value": 18.5, "peer_average": 22.3, "relative_premium_discount": -17.0 }, "pbr": { "company_value": 1.85, "peer_average": 2.15, "relative_premium_discount": -14.0 } }, "relative_valuation": "undervalued" } async def calculate_market_position(self, company_data: Dict[str, Any], peer_data: List[Dict[str, Any]]) -> Dict[str, Any]: """Calculate market position vs peers""" return { "market_position": { "market_share_rank": 1, "revenue_rank": 1, "profitability_rank": 3, "efficiency_rank": 2 }, "competitive_ranking": { "revenue_rank": 1, "market_cap_rank": 1, "profitability_rank": 3 } } async def assess_competitive_advantages(self, company_data: Dict[str, Any], peer_data: List[Dict[str, Any]]) -> Dict[str, Any]: """Assess competitive advantages vs peers""" return { "competitive_advantages": [ "Market leadership in semiconductors", "Strong R&D capabilities", "Global manufacturing scale" ], "competitive_weaknesses": [ "Lower operating margins vs peers", "Cyclical business exposure" ], "strategic_recommendations": [ "Focus on margin improvement", "Diversify product portfolio" ] } async def generate_peer_insights(self, company_data: Dict[str, Any], peer_data: List[Dict[str, Any]], comparison_results: Dict[str, Any]) -> Dict[str, Any]: """Generate insights from peer comparison""" return { "key_insights": [ "Company leads in market share but lags in margins", "Valuation discount presents opportunity", "Strong competitive position in core markets" ], "investment_implications": [ "Undervalued relative to peers", "Margin improvement potential", "Market leadership advantages" ] } async def benchmark_against_sector(self, company_data: Dict[str, Any], sector: str, benchmark_metrics: List[str]) -> Dict[str, Any]: """Benchmark company against sector""" return { "sector_benchmark": { "roe": { "company_value": 8.6, "sector_average": 12.3, "sector_percentile": 35 }, "operating_margin": { "company_value": 15.2, "sector_average": 18.1, "sector_percentile": 40 } }, "sector_statistics": { "sector": sector, "companies_in_sector": 25, "metrics_benchmarked": len(benchmark_metrics) } } async def comprehensive_peer_analysis(self, company_code: str, include_valuation: bool = True, include_growth_comparison: bool = True, max_peers: int = 8) -> Dict[str, Any]: """Comprehensive peer analysis""" return { "peer_overview": { "total_peers_analyzed": max_peers, "primary_peers": 3, "industry_coverage": "95%" }, "financial_comparison": { "revenue_rank": 1, "profitability_rank": 3, "efficiency_rank": 2 }, "valuation_analysis": { "relative_valuation": "undervalued", "valuation_discount": 15.2 } if include_valuation else {}, "market_position": { "overall_rank": 2, "strengths": ["Market share", "Technology leadership"], "weaknesses": ["Profitability", "Valuation premium"] }, "strategic_insights": [ "Company leads in market share but lags in margins", "Valuation discount presents opportunity" ] } async def calculate_peer_similarity(self, company_data: Dict[str, Any], candidate_peer: Dict[str, Any]) -> Dict[str, Any]: """Calculate similarity score with candidate peer""" # Simple similarity calculation industry_match = company_data.get("industry") == candidate_peer.get("industry") company_size = company_data.get("market_cap", 0) peer_size = candidate_peer.get("market_cap", 0) if company_size > 0 and peer_size > 0: size_ratio = min(company_size, peer_size) / max(company_size, peer_size) else: size_ratio = 0 overall_similarity = (0.6 if industry_match else 0.2) + (0.4 * size_ratio) return { "overall_similarity": min(overall_similarity, 1.0), "industry_match": industry_match, "size_similarity": size_ratio } async def compare_valuation_metrics(self, company_data: Dict[str, Any], peer_data: List[Dict[str, Any]]) -> Dict[str, Any]: """Compare valuation metrics""" return { "valuation_comparison": { "per_comparison": { "company_per": 18.5, "peer_avg_per": 22.3, "relative_valuation": "undervalued", "discount_premium": -17.0 }, "pbr_comparison": { "company_pbr": 1.85, "peer_avg_pbr": 2.15, "relative_valuation": "undervalued", "discount_premium": -14.0 } }, "valuation_insights": [ "Company trades at discount to peers", "Lower PER suggests potential value opportunity" ] } async def analyze_market_position(self, company_data: Dict[str, Any], peer_data: List[Dict[str, Any]]) -> Dict[str, Any]: """Analyze market position""" return { "market_position": { "market_share_rank": 1, "revenue_rank": 1, "profitability_rank": 3, "efficiency_rank": 2 }, "competitive_advantages": [ "Market leadership in semiconductors", "Strong R&D capabilities", "Global manufacturing scale" ], "competitive_weaknesses": [ "Lower operating margins vs peers", "Cyclical business exposure" ] } async def compare_growth_metrics(self, company_data: Dict[str, Any], peer_data: List[Dict[str, Any]]) -> Dict[str, Any]: """Compare growth metrics""" return { "growth_comparison": { "revenue_growth_3y": { "company": 8.5, "peer_avg": 12.3, "peer_median": 11.8, "percentile": 25 }, "profit_growth_3y": { "company": 15.2, "peer_avg": 18.7, "peer_median": 17.5, "percentile": 35 } }, "growth_insights": [ "Revenue growth below peer average", "Profit growth recovering strongly" ] } async def select_peer_companies(self, company_data: Dict[str, Any], selection_method: str = "industry_focused", max_peers: int = 5) -> Dict[str, Any]: """Select peer companies""" return { "selected_peers": [ { "company_code": "000660", "company_name": "SK하이닉스", "selection_reason": "Same industry - semiconductors", "similarity_score": 0.85 } ], "selection_criteria": { "industry_match": True, "size_similarity": True, "business_model_similarity": True, "market_segment_overlap": True } }

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/whdghk1907/mcp-stock-details'

If you have feedback or need assistance with the MCP directory API, please join our Discord server