README.md•10.3 kB
# WebScraping.AI MCP Server
A Model Context Protocol (MCP) server implementation that integrates with [WebScraping.AI](https://webscraping.ai) for web data extraction capabilities.
## Features
- Question answering about web page content
- Structured data extraction from web pages
- HTML content retrieval with JavaScript rendering
- Plain text extraction from web pages
- CSS selector-based content extraction
- Multiple proxy types (datacenter, residential) with country selection
- JavaScript rendering using headless Chrome/Chromium
- Concurrent request management with rate limiting
- Custom JavaScript execution on target pages
- Device emulation (desktop, mobile, tablet)
- Account usage monitoring
## Installation
### Running with npx
```bash
env WEBSCRAPING_AI_API_KEY=your_api_key npx -y webscraping-ai-mcp
```
### Manual Installation
```bash
# Clone the repository
git clone https://github.com/webscraping-ai/webscraping-ai-mcp-server.git
cd webscraping-ai-mcp-server
# Install dependencies
npm install
# Run
npm start
```
### Configuring in Cursor
Note: Requires Cursor version 0.45.6+
The WebScraping.AI MCP server can be configured in two ways in Cursor:
1. **Project-specific Configuration** (recommended for team projects):
Create a `.cursor/mcp.json` file in your project directory:
```json
{
"servers": {
"webscraping-ai": {
"type": "command",
"command": "npx -y webscraping-ai-mcp",
"env": {
"WEBSCRAPING_AI_API_KEY": "your-api-key",
"WEBSCRAPING_AI_CONCURRENCY_LIMIT": "5"
}
}
}
}
```
2. **Global Configuration** (for personal use across all projects):
Create a `~/.cursor/mcp.json` file in your home directory with the same configuration format as above.
> If you are using Windows and are running into issues, try using `cmd /c "set WEBSCRAPING_AI_API_KEY=your-api-key && npx -y webscraping-ai-mcp"` as the command.
This configuration will make the WebScraping.AI tools available to Cursor's AI agent automatically when relevant for web scraping tasks.
### Running on Claude Desktop
Add this to your `claude_desktop_config.json`:
```json
{
"mcpServers": {
"mcp-server-webscraping-ai": {
"command": "npx",
"args": ["-y", "webscraping-ai-mcp"],
"env": {
"WEBSCRAPING_AI_API_KEY": "YOUR_API_KEY_HERE",
"WEBSCRAPING_AI_CONCURRENCY_LIMIT": "5"
}
}
}
}
```
## Configuration
### Environment Variables
#### Required
- `WEBSCRAPING_AI_API_KEY`: Your WebScraping.AI API key
- Required for all operations
- Get your API key from [WebScraping.AI](https://webscraping.ai)
#### Optional Configuration
- `WEBSCRAPING_AI_CONCURRENCY_LIMIT`: Maximum number of concurrent requests (default: `5`)
- `WEBSCRAPING_AI_DEFAULT_PROXY_TYPE`: Type of proxy to use (default: `residential`)
- `WEBSCRAPING_AI_DEFAULT_JS_RENDERING`: Enable/disable JavaScript rendering (default: `true`)
- `WEBSCRAPING_AI_DEFAULT_TIMEOUT`: Maximum web page retrieval time in ms (default: `15000`, max: `30000`)
- `WEBSCRAPING_AI_DEFAULT_JS_TIMEOUT`: Maximum JavaScript rendering time in ms (default: `2000`)
### Configuration Examples
For standard usage:
```bash
# Required
export WEBSCRAPING_AI_API_KEY=your-api-key
# Optional - customize behavior (default values)
export WEBSCRAPING_AI_CONCURRENCY_LIMIT=5
export WEBSCRAPING_AI_DEFAULT_PROXY_TYPE=residential # datacenter or residential
export WEBSCRAPING_AI_DEFAULT_JS_RENDERING=true
export WEBSCRAPING_AI_DEFAULT_TIMEOUT=15000
export WEBSCRAPING_AI_DEFAULT_JS_TIMEOUT=2000
```
## Available Tools
### 1. Question Tool (`webscraping_ai_question`)
Ask questions about web page content.
```json
{
"name": "webscraping_ai_question",
"arguments": {
"url": "https://example.com",
"question": "What is the main topic of this page?",
"timeout": 30000,
"js": true,
"js_timeout": 2000,
"wait_for": ".content-loaded",
"proxy": "datacenter",
"country": "us"
}
}
```
Example response:
```json
{
"content": [
{
"type": "text",
"text": "The main topic of this page is examples and documentation for HTML and web standards."
}
],
"isError": false
}
```
### 2. Fields Tool (`webscraping_ai_fields`)
Extract structured data from web pages based on instructions.
```json
{
"name": "webscraping_ai_fields",
"arguments": {
"url": "https://example.com/product",
"fields": {
"title": "Extract the product title",
"price": "Extract the product price",
"description": "Extract the product description"
},
"js": true,
"timeout": 30000
}
}
```
Example response:
```json
{
"content": [
{
"type": "text",
"text": {
"title": "Example Product",
"price": "$99.99",
"description": "This is an example product description."
}
}
],
"isError": false
}
```
### 3. HTML Tool (`webscraping_ai_html`)
Get the full HTML of a web page with JavaScript rendering.
```json
{
"name": "webscraping_ai_html",
"arguments": {
"url": "https://example.com",
"js": true,
"timeout": 30000,
"wait_for": "#content-loaded"
}
}
```
Example response:
```json
{
"content": [
{
"type": "text",
"text": "<html>...[full HTML content]...</html>"
}
],
"isError": false
}
```
### 4. Text Tool (`webscraping_ai_text`)
Extract the visible text content from a web page.
```json
{
"name": "webscraping_ai_text",
"arguments": {
"url": "https://example.com",
"js": true,
"timeout": 30000
}
}
```
Example response:
```json
{
"content": [
{
"type": "text",
"text": "Example Domain\nThis domain is for use in illustrative examples in documents..."
}
],
"isError": false
}
```
### 5. Selected Tool (`webscraping_ai_selected`)
Extract content from a specific element using a CSS selector.
```json
{
"name": "webscraping_ai_selected",
"arguments": {
"url": "https://example.com",
"selector": "div.main-content",
"js": true,
"timeout": 30000
}
}
```
Example response:
```json
{
"content": [
{
"type": "text",
"text": "<div class=\"main-content\">This is the main content of the page.</div>"
}
],
"isError": false
}
```
### 6. Selected Multiple Tool (`webscraping_ai_selected_multiple`)
Extract content from multiple elements using CSS selectors.
```json
{
"name": "webscraping_ai_selected_multiple",
"arguments": {
"url": "https://example.com",
"selectors": ["div.header", "div.product-list", "div.footer"],
"js": true,
"timeout": 30000
}
}
```
Example response:
```json
{
"content": [
{
"type": "text",
"text": [
"<div class=\"header\">Header content</div>",
"<div class=\"product-list\">Product list content</div>",
"<div class=\"footer\">Footer content</div>"
]
}
],
"isError": false
}
```
### 7. Account Tool (`webscraping_ai_account`)
Get information about your WebScraping.AI account.
```json
{
"name": "webscraping_ai_account",
"arguments": {}
}
```
Example response:
```json
{
"content": [
{
"type": "text",
"text": {
"requests": 5000,
"remaining": 4500,
"limit": 10000,
"resets_at": "2023-12-31T23:59:59Z"
}
}
],
"isError": false
}
```
## Common Options for All Tools
The following options can be used with all scraping tools:
- `timeout`: Maximum web page retrieval time in ms (15000 by default, maximum is 30000)
- `js`: Execute on-page JavaScript using a headless browser (true by default)
- `js_timeout`: Maximum JavaScript rendering time in ms (2000 by default)
- `wait_for`: CSS selector to wait for before returning the page content
- `proxy`: Type of proxy, datacenter or residential (residential by default)
- `country`: Country of the proxy to use (US by default). Supported countries: us, gb, de, it, fr, ca, es, ru, jp, kr, in
- `custom_proxy`: Your own proxy URL in "http://user:password@host:port" format
- `device`: Type of device emulation. Supported values: desktop, mobile, tablet
- `error_on_404`: Return error on 404 HTTP status on the target page (false by default)
- `error_on_redirect`: Return error on redirect on the target page (false by default)
- `js_script`: Custom JavaScript code to execute on the target page
## Error Handling
The server provides robust error handling:
- Automatic retries for transient errors
- Rate limit handling with backoff
- Detailed error messages
- Network resilience
Example error response:
```json
{
"content": [
{
"type": "text",
"text": "API Error: 429 Too Many Requests"
}
],
"isError": true
}
```
## Integration with LLMs
This server implements the [Model Context Protocol](https://github.com/facebookresearch/modelcontextprotocol), making it compatible with any MCP-enabled LLM platforms. You can configure your LLM to use these tools for web scraping tasks.
### Example: Configuring Claude with MCP
```javascript
const { Claude } = require('@anthropic-ai/sdk');
const { Client } = require('@modelcontextprotocol/sdk/client/index.js');
const { StdioClientTransport } = require('@modelcontextprotocol/sdk/client/stdio.js');
const claude = new Claude({
apiKey: process.env.ANTHROPIC_API_KEY
});
const transport = new StdioClientTransport({
command: 'npx',
args: ['-y', 'webscraping-ai-mcp'],
env: {
WEBSCRAPING_AI_API_KEY: 'your-api-key'
}
});
const client = new Client({
name: 'claude-client',
version: '1.0.0'
});
await client.connect(transport);
// Now you can use Claude with WebScraping.AI tools
const tools = await client.listTools();
const response = await claude.complete({
prompt: 'What is the main topic of example.com?',
tools: tools
});
```
## Development
```bash
# Clone the repository
git clone https://github.com/webscraping-ai/webscraping-ai-mcp-server.git
cd webscraping-ai-mcp-server
# Install dependencies
npm install
# Run tests
npm test
# Add your .env file
cp .env.example .env
# Start the inspector
npx @modelcontextprotocol/inspector node src/index.js
```
### Contributing
1. Fork the repository
2. Create your feature branch
3. Run tests: `npm test`
4. Submit a pull request
## License
MIT License - see LICENSE file for details