WebScraping-AI MCP Server

Official

remote-capable server

The server can be hosted and run remotely because it primarily relies on remote services or has no dependency on the local environment.

Integrations

  • Enables custom JavaScript execution on target web pages, including headless Chrome/Chromium rendering and the ability to run custom JS scripts with configurable timeout settings.

WebScraping.AI MCP Server

A Model Context Protocol (MCP) server implementation that integrates with WebScraping.AI for web data extraction capabilities.

Features

  • Question answering about web page content
  • Structured data extraction from web pages
  • HTML content retrieval with JavaScript rendering
  • Plain text extraction from web pages
  • CSS selector-based content extraction
  • Multiple proxy types (datacenter, residential) with country selection
  • JavaScript rendering using headless Chrome/Chromium
  • Concurrent request management with rate limiting
  • Custom JavaScript execution on target pages
  • Device emulation (desktop, mobile, tablet)
  • Account usage monitoring

Installation

Running with npx

env WEBSCRAPING_AI_API_KEY=your_api_key npx -y webscraping-ai-mcp

Manual Installation

# Clone the repository git clone https://github.com/webscraping-ai/webscraping-ai-mcp-server.git cd webscraping-ai-mcp-server # Install dependencies npm install # Run npm start

Configuring in Cursor

Note: Requires Cursor version 0.45.6+

The WebScraping.AI MCP server can be configured in two ways in Cursor:

  1. Project-specific Configuration (recommended for team projects): Create a .cursor/mcp.json file in your project directory:
    { "servers": { "webscraping-ai": { "type": "command", "command": "npx -y webscraping-ai-mcp", "env": { "WEBSCRAPING_AI_API_KEY": "your-api-key", "WEBSCRAPING_AI_CONCURRENCY_LIMIT": "5" } } } }
  2. Global Configuration (for personal use across all projects): Create a ~/.cursor/mcp.json file in your home directory with the same configuration format as above.

If you are using Windows and are running into issues, try using cmd /c "set WEBSCRAPING_AI_API_KEY=your-api-key && npx -y webscraping-ai-mcp" as the command.

This configuration will make the WebScraping.AI tools available to Cursor's AI agent automatically when relevant for web scraping tasks.

Running on Claude Desktop

Add this to your claude_desktop_config.json:

{ "mcpServers": { "mcp-server-webscraping-ai": { "command": "npx", "args": ["-y", "webscraping-ai-mcp"], "env": { "WEBSCRAPING_AI_API_KEY": "YOUR_API_KEY_HERE", "WEBSCRAPING_AI_CONCURRENCY_LIMIT": "5" } } } }

Configuration

Environment Variables

Required

  • WEBSCRAPING_AI_API_KEY: Your WebScraping.AI API key

Optional Configuration

  • WEBSCRAPING_AI_CONCURRENCY_LIMIT: Maximum number of concurrent requests (default: 5)
  • WEBSCRAPING_AI_DEFAULT_PROXY_TYPE: Type of proxy to use (default: residential)
  • WEBSCRAPING_AI_DEFAULT_JS_RENDERING: Enable/disable JavaScript rendering (default: true)
  • WEBSCRAPING_AI_DEFAULT_TIMEOUT: Maximum web page retrieval time in ms (default: 15000, max: 30000)
  • WEBSCRAPING_AI_DEFAULT_JS_TIMEOUT: Maximum JavaScript rendering time in ms (default: 2000)

Configuration Examples

For standard usage:

# Required export WEBSCRAPING_AI_API_KEY=your-api-key # Optional - customize behavior (default values) export WEBSCRAPING_AI_CONCURRENCY_LIMIT=5 export WEBSCRAPING_AI_DEFAULT_PROXY_TYPE=residential # datacenter or residential export WEBSCRAPING_AI_DEFAULT_JS_RENDERING=true export WEBSCRAPING_AI_DEFAULT_TIMEOUT=15000 export WEBSCRAPING_AI_DEFAULT_JS_TIMEOUT=2000

Available Tools

1. Question Tool (webscraping_ai_question)

Ask questions about web page content.

{ "name": "webscraping_ai_question", "arguments": { "url": "https://example.com", "question": "What is the main topic of this page?", "timeout": 30000, "js": true, "js_timeout": 2000, "wait_for": ".content-loaded", "proxy": "datacenter", "country": "us" } }

Example response:

{ "content": [ { "type": "text", "text": "The main topic of this page is examples and documentation for HTML and web standards." } ], "isError": false }

2. Fields Tool (webscraping_ai_fields)

Extract structured data from web pages based on instructions.

{ "name": "webscraping_ai_fields", "arguments": { "url": "https://example.com/product", "fields": { "title": "Extract the product title", "price": "Extract the product price", "description": "Extract the product description" }, "js": true, "timeout": 30000 } }

Example response:

{ "content": [ { "type": "text", "text": { "title": "Example Product", "price": "$99.99", "description": "This is an example product description." } } ], "isError": false }

3. HTML Tool (webscraping_ai_html)

Get the full HTML of a web page with JavaScript rendering.

{ "name": "webscraping_ai_html", "arguments": { "url": "https://example.com", "js": true, "timeout": 30000, "wait_for": "#content-loaded" } }

Example response:

{ "content": [ { "type": "text", "text": "<html>...[full HTML content]...</html>" } ], "isError": false }

4. Text Tool (webscraping_ai_text)

Extract the visible text content from a web page.

{ "name": "webscraping_ai_text", "arguments": { "url": "https://example.com", "js": true, "timeout": 30000 } }

Example response:

{ "content": [ { "type": "text", "text": "Example Domain\nThis domain is for use in illustrative examples in documents..." } ], "isError": false }

5. Selected Tool (webscraping_ai_selected)

Extract content from a specific element using a CSS selector.

{ "name": "webscraping_ai_selected", "arguments": { "url": "https://example.com", "selector": "div.main-content", "js": true, "timeout": 30000 } }

Example response:

{ "content": [ { "type": "text", "text": "<div class=\"main-content\">This is the main content of the page.</div>" } ], "isError": false }

6. Selected Multiple Tool (webscraping_ai_selected_multiple)

Extract content from multiple elements using CSS selectors.

{ "name": "webscraping_ai_selected_multiple", "arguments": { "url": "https://example.com", "selectors": ["div.header", "div.product-list", "div.footer"], "js": true, "timeout": 30000 } }

Example response:

{ "content": [ { "type": "text", "text": [ "<div class=\"header\">Header content</div>", "<div class=\"product-list\">Product list content</div>", "<div class=\"footer\">Footer content</div>" ] } ], "isError": false }

7. Account Tool (webscraping_ai_account)

Get information about your WebScraping.AI account.

{ "name": "webscraping_ai_account", "arguments": {} }

Example response:

{ "content": [ { "type": "text", "text": { "requests": 5000, "remaining": 4500, "limit": 10000, "resets_at": "2023-12-31T23:59:59Z" } } ], "isError": false }

Common Options for All Tools

The following options can be used with all scraping tools:

  • timeout: Maximum web page retrieval time in ms (15000 by default, maximum is 30000)
  • js: Execute on-page JavaScript using a headless browser (true by default)
  • js_timeout: Maximum JavaScript rendering time in ms (2000 by default)
  • wait_for: CSS selector to wait for before returning the page content
  • proxy: Type of proxy, datacenter or residential (residential by default)
  • country: Country of the proxy to use (US by default). Supported countries: us, gb, de, it, fr, ca, es, ru, jp, kr, in
  • custom_proxy: Your own proxy URL in "http://user:password@host:port" format
  • device: Type of device emulation. Supported values: desktop, mobile, tablet
  • error_on_404: Return error on 404 HTTP status on the target page (false by default)
  • error_on_redirect: Return error on redirect on the target page (false by default)
  • js_script: Custom JavaScript code to execute on the target page

Error Handling

The server provides robust error handling:

  • Automatic retries for transient errors
  • Rate limit handling with backoff
  • Detailed error messages
  • Network resilience

Example error response:

{ "content": [ { "type": "text", "text": "API Error: 429 Too Many Requests" } ], "isError": true }

Integration with LLMs

This server implements the Model Context Protocol, making it compatible with any MCP-enabled LLM platforms. You can configure your LLM to use these tools for web scraping tasks.

Example: Configuring Claude with MCP

const { Claude } = require('@anthropic-ai/sdk'); const { Client } = require('@modelcontextprotocol/sdk/client/index.js'); const { StdioClientTransport } = require('@modelcontextprotocol/sdk/client/stdio.js'); const claude = new Claude({ apiKey: process.env.ANTHROPIC_API_KEY }); const transport = new StdioClientTransport({ command: 'npx', args: ['-y', 'webscraping-ai-mcp'], env: { WEBSCRAPING_AI_API_KEY: 'your-api-key' } }); const client = new Client({ name: 'claude-client', version: '1.0.0' }); await client.connect(transport); // Now you can use Claude with WebScraping.AI tools const tools = await client.listTools(); const response = await claude.complete({ prompt: 'What is the main topic of example.com?', tools: tools });

Development

# Clone the repository git clone https://github.com/webscraping-ai/webscraping-ai-mcp-server.git cd webscraping-ai-mcp-server # Install dependencies npm install # Run tests npm test # Add your .env file cp .env.example .env # Start the inspector npx @modelcontextprotocol/inspector node src/index.js

Contributing

  1. Fork the repository
  2. Create your feature branch
  3. Run tests: npm test
  4. Submit a pull request

License

MIT License - see LICENSE file for details

ID: 741k1wuzkz