Skip to main content
Glama

LanceDB Node

by vurtnec
README.md2.07 kB
# LanceDB Node.js Vector Search A Node.js implementation for vector search using LanceDB and Ollama's embedding model. ## Overview This project demonstrates how to: - Connect to a LanceDB database - Create custom embedding functions using Ollama - Perform vector similarity search against stored documents - Process and display search results ## Prerequisites - Node.js (v14 or later) - Ollama running locally with the `nomic-embed-text` model - LanceDB storage location with read/write permissions ## Installation 1. Clone the repository 2. Install dependencies: ```bash pnpm install ``` ## Dependencies - `@lancedb/lancedb`: LanceDB client for Node.js - `apache-arrow`: For handling columnar data - `node-fetch`: For making API calls to Ollama ## Usage Run the vector search test script: ```bash pnpm test-vector-search ``` Or directly execute: ```bash node test-vector-search.js ``` ## Configuration The script connects to: - LanceDB at the configured path - Ollama API at `http://localhost:11434/api/embeddings` ## MCP Configuration To integrate with Claude Desktop as an MCP service, add the following to your MCP configuration JSON: ```json { "mcpServers": { "lanceDB": { "command": "node", "args": [ "/path/to/lancedb-node/dist/index.js", "--db-path", "/path/to/your/lancedb/storage" ] } } } ``` Replace the paths with your actual installation paths: - `/path/to/lancedb-node/dist/index.js` - Path to the compiled index.js file - `/path/to/your/lancedb/storage` - Path to your LanceDB storage directory ## Custom Embedding Function The project includes a custom `OllamaEmbeddingFunction` that: - Sends text to the Ollama API - Receives embeddings with 768 dimensions - Formats them for use with LanceDB ## Vector Search Example The example searches for "how to define success criteria" in the "ai-rag" table, displaying results with their similarity scores. ## License [MIT License](LICENSE) ## Contributing Contributions are welcome! Please feel free to submit a Pull Request.

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/vurtnec/mcp-LanceDB-node'

If you have feedback or need assistance with the MCP directory API, please join our Discord server