Skip to main content
Glama
models.py1.03 kB
"""Shared Pydantic models.""" from pydantic import BaseModel, Field, validator from typing import Optional, Dict, Any from .config import validate_transcript class TranscriptInput(BaseModel): """Base input model for transcript-based operations.""" transcript: str = Field( ..., description="The meeting transcript to process", min_length=10, max_length=10000, ) @validator("transcript") def validate_transcript_content(cls, v): """Validate transcript content.""" validate_transcript(v) return v class ToolResponse(BaseModel): """Standardized tool response model.""" output: str = Field(..., description="The tool output") error: Optional[str] = Field(None, description="Error message if any") class InvokeRequest(BaseModel): """MCP-compliant tool invocation request model.""" name: str = Field(..., description="Name of the tool to invoke") arguments: Dict[str, Any] = Field(..., description="Arguments for the tool")

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/vksinghh25/mcps'

If you have feedback or need assistance with the MCP directory API, please join our Discord server