Skip to main content
Glama

DocAgent

by vinnyfds

DocAgent - AI-Powered Document Generation Suite

AI-powered document generation suite with LangGraph workflows and Cursor IDE integration via MCP (Model Context Protocol)

DocAgent is a comprehensive document generation system that creates professional software documentation using AI. It integrates seamlessly with Cursor IDE through MCP servers and supports 12 different document types with orchestrated workflows.

🚀 Features

Document Types

  • 📋 Business Requirements (BRD/PRD) - Product and business requirement documents
  • ⚙️ Functional Requirements (FRD) - Detailed functional specifications
  • 🏗️ System Requirements (SRD) - System architecture and requirements
  • 🧪 Technical Requirements (TRD/TDD) - Technical design and test documents
  • 🗄️ Database Design (ERD/API) - Entity relationship diagrams and API specs
  • 🎨 UI/UX Design - Wireframes and design system documentation
  • 📊 Project Planning - Project plans and milestone tracking
  • ✅ Test Strategy - Comprehensive testing documentation
  • 🚀 CI/CD Documentation - Deployment and environment setup
  • 📦 Release Runbooks - Release procedures and rollback plans

Core Capabilities

  • 🔄 LangGraph Workflows - Parallel document generation with conditional logic
  • 🎯 Smart Orchestration - Profile-based generation (Full, Lean, Tech-only, PM-only)
  • 💻 Cursor IDE Integration - Native MCP server integration
  • 🛡️ Safe File Operations - Collision detection and backup systems
  • 📝 Jinja2 Templates - Customizable document templates
  • ⚡ FastMCP v2 - Modern MCP protocol implementation
  • 🔧 CLI Tools - Command-line interface for batch operations

📦 Installation

Prerequisites

  • Python 3.9+
  • Cursor IDE
  • Git

Quick Setup

# Clone the repository git clone https://github.com/vinnyfds/docagent.git cd docagent # Install dependencies pip install -r requirements.txt # Create environment file cp .env.template .env # Edit .env with your API keys # Verify installation python scripts/verify_mcp.py

Cursor IDE Integration

# Install FastMCP pip install fastmcp # The MCP servers will be automatically configured in Cursor # Restart Cursor to load the DocAgent tools

🎯 Quick Start

  1. Open any file in Cursor
  2. Type / to open command palette
  3. Look for DocAgent tools:
    • ping() - Health check
    • generate_all() - Generate all documents
    • orchestrate_docgen() - Profile-based generation

Using CLI

# Generate all documents python scripts/cli_generate.py --idea tests/fixtures/idea_sample.json --all # Generate specific documents python scripts/cli_generate.py --idea my_idea.json --docs brd_prd frd srd # Use orchestration profiles python -c " from orchestrator.graph import orchestrate_docgen from docs_agent.state import Idea import json with open('tests/fixtures/idea_sample.json') as f: data = json.load(f) idea = Idea(**data) result = orchestrate_docgen(idea, profile='lean', overwrite=False) print('Generated:', result) "

🏗️ Architecture

System Overview

┌─────────────────┐ ┌──────────────────┐ ┌─────────────────┐ │ Cursor IDE │◄──►│ FastMCP Server │◄──►│ LangGraph │ │ │ │ │ │ Workflow │ │ - Command Palette│ │ - DocGenAgent │ │ │ │ - Tools Integration │ │ - Orchestrator │ │ - Parallel Nodes│ │ - MCP Protocol │ │ - Tool Registry │ │ - Conditional │ └─────────────────┘ └──────────────────┘ └─────────────────┘ │ ▼ ┌──────────────────┐ │ Document Engine │ │ │ │ - Jinja2 Templates│ │ - Safe File Ops │ │ - Output Manager │ └──────────────────┘

Project Structure

docagent/ ├── docs_agent/ # Core document generation agent │ ├── __init__.py # Package initialization │ ├── state.py # Pydantic models (Idea, Context, DocRequest) │ ├── graph.py # LangGraph workflow definition │ ├── server.py # FastMCP server implementation │ ├── nodes/ # Document generation nodes │ │ ├── brd_prd.py # Business requirements │ │ ├── frd.py # Functional requirements │ │ ├── srd.py # System requirements │ │ └── ... # Other document types │ ├── prompts/ # Jinja2 templates │ │ ├── brd_prd.md.jinja │ │ ├── openapi.yaml.jinja │ │ └── ... │ └── utils/ # Utilities │ ├── render.py # Template rendering │ └── safety.py # Safe file operations ├── orchestrator/ # Orchestration layer │ ├── graph.py # Orchestration logic │ └── server.py # Orchestrator MCP server ├── scripts/ # CLI and utilities │ ├── cli_generate.py # Command-line interface │ ├── verify_mcp.py # Installation verification │ └── test_mcp_servers.py # Server testing ├── tests/ # Test suite │ └── fixtures/ # Test data │ └── idea_sample.json ├── outputs/ # Generated documents ├── .cursor_rules # Cursor IDE guardrails ├── requirements.txt # Python dependencies ├── .env.template # Environment template └── README.md # This file

🎮 Usage Examples

Idea Structure

{ "title": "E-commerce Platform", "description": "Modern e-commerce platform with AI recommendations", "context": { "domain": "E-commerce", "stakeholders": ["Product Manager", "Engineering Team", "UX Designer"], "timeline": "6 months", "budget": "$500K" }, "personas": [ {"name": "Customer", "description": "Online shoppers"}, {"name": "Admin", "description": "Platform administrators"} ], "modules": [ {"name": "User Management", "description": "User registration and profiles"}, {"name": "Product Catalog", "description": "Product browsing and search"}, {"name": "Shopping Cart", "description": "Cart and checkout functionality"} ], "entities": [ {"name": "User", "fields": ["id", "email", "profile"]}, {"name": "Product", "fields": ["id", "name", "price", "inventory"]} ], "apis": [ {"name": "User API", "methods": ["GET", "POST", "PUT", "DELETE"]}, {"name": "Product API", "methods": ["GET", "POST", "PUT"]} ] }

Orchestration Profiles

PROFILES = { "full": [ "brd_prd", "frd", "srd", "trd_tdd", "erd_api", "ui_wireframes", "project_plan", "test_strategy", "cicd_env", "release_runbook" ], "lean": ["brd_prd", "frd", "srd", "erd_api"], "tech_only": ["srd", "trd_tdd", "erd_api", "cicd_env"], "pm_only": ["brd_prd", "project_plan", "test_strategy", "release_runbook"] }

🛠️ Development

Running Tests

# Run verification tests python scripts/verify_mcp.py # Test MCP servers python scripts/test_mcp_servers.py # Generate sample documents python scripts/cli_generate.py --idea tests/fixtures/idea_sample.json --all

Code Quality

# Install development dependencies pip install ruff pytest # Run linting ruff check . # Run tests pytest -v

Contributing

  1. Fork the repository
  2. Create a feature branch (git checkout -b feature/amazing-feature)
  3. Commit your changes (git commit -m 'Add amazing feature')
  4. Push to the branch (git push origin feature/amazing-feature)
  5. Open a Pull Request

🔧 Configuration

Environment Variables

# Required OPENAI_API_KEY=your_openai_api_key_here # Optional DOCGEN_BUCKET=your_s3_bucket_for_outputs ALLOW_OVERWRITE=false LOG_LEVEL=INFO ENVIRONMENT=development MCP_HOST=localhost MCP_PORT=3000

Cursor MCP Setup

The MCP servers are automatically configured for Cursor IDE. Manual configuration:

{ "mcpServers": { "DocGenAgent": { "command": "cmd", "args": ["/c", "python", "docs_agent/server.py"], "cwd": "/path/to/docagent" }, "DocGenOrchestrator": { "command": "cmd", "args": ["/c", "python", "orchestrator/server.py"], "cwd": "/path/to/docagent" } } }

📚 Documentation

🚀 Deployment

AWS Lambda (Coming Soon)

# Package for serverless deployment npm install -g serverless serverless deploy

Docker

# Build container docker build -t docagent . # Run container docker run -p 3000:3000 docagent

🤝 Contributing

We welcome contributions! Please see our Contributing Guide for details.

Contributors

📄 License

This project is licensed under the MIT License - see the LICENSE file for details.

🙏 Acknowledgments

📧 Support


🎯 Transform your ideas into comprehensive documentation with AI-powered precision!

-
security - not tested
A
license - permissive license
-
quality - not tested

hybrid server

The server is able to function both locally and remotely, depending on the configuration or use case.

AI-powered document generation suite that creates comprehensive software documentation including requirements, design specs, test strategies, and deployment guides through LangGraph workflows. Integrates with Cursor IDE via MCP to transform project ideas into professional documentation suites.

  1. 🚀 Features
    1. Document Types
    2. Core Capabilities
  2. 📦 Installation
    1. Prerequisites
    2. Quick Setup
    3. Cursor IDE Integration
  3. 🎯 Quick Start
    1. Using Cursor IDE (Recommended)
    2. Using CLI
  4. 🏗️ Architecture
    1. System Overview
    2. Project Structure
  5. 🎮 Usage Examples
    1. Idea Structure
    2. Orchestration Profiles
  6. 🛠️ Development
    1. Running Tests
    2. Code Quality
    3. Contributing
  7. 🔧 Configuration
    1. Environment Variables
    2. Cursor MCP Setup
  8. 📚 Documentation
    1. 🚀 Deployment
      1. AWS Lambda (Coming Soon)
      2. Docker
    2. 🤝 Contributing
      1. Contributors
    3. 📄 License
      1. 🙏 Acknowledgments
        1. 📧 Support

          Related MCP Servers

          • -
            security
            A
            license
            -
            quality
            An AI-powered development toolkit for Cursor providing intelligent coding assistance through advanced reasoning, UI screenshot analysis, and code review tools.
            Last updated -
            593
            329
            TypeScript
            MIT License
          • -
            security
            F
            license
            -
            quality
            A customized MCP server that enables integration between LLM applications and documentation sources, providing AI-assisted access to LangGraph and Model Context Protocol documentation.
            Last updated -
            1
            Python
            • Linux
            • Apple
          • A
            security
            F
            license
            A
            quality
            AI-driven tool that helps developers create beautiful UI components instantly through natural language descriptions, integrating with popular IDEs like Cursor, Windsurf, and VSCode.
            Last updated -
            3
            2
          • A
            security
            F
            license
            A
            quality
            An MCP server that enables AI-powered IDEs to implement a structured development workflow from requirements gathering to code implementation, guiding users through goal collection, requirements specification, design documentation, task planning, and execution.
            Last updated -
            9
            89
            6
            TypeScript

          View all related MCP servers

          MCP directory API

          We provide all the information about MCP servers via our MCP API.

          curl -X GET 'https://glama.ai/api/mcp/v1/servers/vinnyfds/docagent'

          If you have feedback or need assistance with the MCP directory API, please join our Discord server