Skip to main content
Glama

DocAgent

by vinnyfds
TODO.md4.34 kB
# DocGen Suite - TODO & Progress ## ✅ Completed Tasks ### Core Infrastructure - ✅ Create Cursor guardrails (`.cursor_rules`) - ✅ Scaffold Docs Agent folders and define Pydantic v2 state models - ✅ Implement Jinja2 rendering (`render.py`) and safe file writing (`safety.py`) - ✅ Add 12 specific document template files (`.md.jinja`, `.mmd.jinja`, `.yaml.jinja`) - ✅ Implement node modules for each document family - ✅ Build the LangGraph workflow for the Docs Agent - ✅ Create MCP server for the Docs Agent with all tools - ✅ Create Orchestrator agent with predefined profiles - ✅ Configure Cursor MCP (global config) to recognize both servers - ✅ Develop CLI scripts (`cli_generate.py`, `verify_mcp.py`) - ✅ Add tests and sample idea fixture (`idea_sample.json`) - ✅ Define Python dependencies (`requirements.txt`) - ✅ Add environment configuration (`.env.template`) - ✅ Fix FastMCP v2 API compatibility issues - ✅ Update server implementations for FastMCP v2 - ✅ Configure global MCP with working directory and absolute paths ### Document Generation - ✅ All 12 document types generate successfully - ✅ Template rendering works with sample data - ✅ Safe file operations with collision handling - ✅ CLI generation pipeline functional - ✅ LangGraph workflow executes correctly ### MCP Integration - ✅ FastMCP v2 servers start successfully - ✅ Tools properly registered using `Tool.from_function()` - ✅ Global MCP configuration updated - ✅ Working directory and Python paths configured - ✅ Servers ready for Cursor integration ## 🔄 Immediate Next Steps ### Cursor MCP Testing - [ ] Restart Cursor to load new MCP configuration - [ ] Verify MCP servers appear in Tools & Integrations - [ ] Test tool registration in MCP Servers panel - [ ] Verify tools appear in command palette (`/`) - [ ] Test basic tool functionality (e.g., `ping()`) - [ ] Generate documents via MCP tools ### Final Validation - [ ] Run `ruff check .` for code quality - [ ] Run `pytest -q` for test coverage - [ ] Verify MCP tool integration end-to-end - [ ] Test document generation via MCP ## 🚀 Future Enhancements ### AWS Serverless (Lambda) - [ ] Package both servers for Lambda - [ ] Create `serverless.yml` configuration - [ ] Implement `handler.py` files - [ ] Define IAM policies - [ ] Create `infra/README.md` ### Advanced Features - [ ] S3 storage integration for outputs - [ ] Additional document templates - [ ] Model provider switching (OpenAI, Anthropic, etc.) - [ ] Real-time collaboration features - [ ] Template customization UI - [ ] Document versioning and history ### Performance & Monitoring - [ ] Add application logging - [ ] Performance metrics collection - [ ] Error tracking and alerting - [ ] Usage analytics dashboard ## 📊 Current Status **Phase:** MCP Integration Testing **Progress:** 95% Complete **Next Milestone:** Cursor MCP Tools Working ### What's Working - Document generation pipeline is functional - FastMCP v2 servers start correctly - Tools properly registered and configured - Global MCP configuration updated - Ready for Cursor integration testing ### What Needs Testing - Cursor MCP server loading - Tool registration in IDE - Command palette integration - End-to-end document generation via MCP ## 🔧 Technical Notes ### FastMCP v2 Compatibility - Updated from decorator-based tools to `Tool.from_function()` - Proper async support for tool registration - Working directory configuration for module imports - Absolute Python paths for reliable execution ### MCP Configuration - Global config at `c:\Users\kvnr\.cursor\mcp.json` - Working directory set to project root - Absolute paths for Python and server scripts - Both DocGenAgent and DocGenOrchestrator configured ### Known Issues - None currently identified - All previous errors resolved - Servers start successfully in test environment ## 📝 Next Session Goals 1. **Test Cursor MCP Integration** - Verify servers load in Cursor - Confirm tools appear in command palette - Test basic functionality 2. **End-to-End Validation** - Generate documents via MCP tools - Verify output quality and consistency - Test orchestration profiles 3. **Documentation Updates** - Update README with MCP usage - Create troubleshooting guide - Document AWS deployment steps

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/vinnyfds/docagent'

If you have feedback or need assistance with the MCP directory API, please join our Discord server