Skip to main content
Glama

Vectra AI MCP Server

This project implements an MCP server for the Vectra AI Platform.

What is Vectra AI MCP?

An MCP server that connects AI assistants to your Vectra AI security platform, enabling intelligent analysis of threat detection data, security insights, and automated incident response workflows. Compatible with Claude, ChatGPT, Cursor, VS Code and other MCP-enabled AI tools.

What can you do with Vectra AI MCP?

  • Investigate threats in natural language

  • Take response actions in Vectra directly from your AI agent

  • Correlate and analyze security data using prompts

  • Dynamically build advanced visulizations for analysis

  • Generate investigation reports from natural language

Setup - Host Locally

Prerequisites

  1. Install Python Check .python-version file for the required version

  2. Install uv - Python package manager

# On macOS/Linux curl -LsSf https://astral.sh/uv/install.sh | sh # On Windows powershell -c "irm https://astral.sh/uv/install.ps1 | iex" # Or via pip pip install uv

Setup Steps

  1. Clone/Download the project to your local machine

  2. Navigate to the project directory:

cd your-project-directory
  1. Configure environment variables:

# Copy the example environment file cp .env.example .env

Then edit the .env file with your actual Vectra AI Platform credentials. Required variables to update:

  • VECTRA_BASE_URL: Your Vectra portal URL

  • VECTRA_CLIENT_ID: Your client ID from Vectra

  • VECTRA_CLIENT_SECRET: Your client secret from Vectra

  1. Create and activate a virtual environment:

uv venv # Activate it: # On macOS/Linux: source .venv/bin/activate # On Windows: .venv\Scripts\activate
  1. Install dependencies:

uv sync

This will install all dependencies specified in pyproject.toml using the exact versions from uv.lock.

  1. Run the application:

The server supports multiple transport protocols:

# Run with stdio transport (default, for Claude Desktop) python server.py python server.py --transport stdio # Run with SSE transport (for HTTP-based MCP clients) python server.py --transport sse --host 0.0.0.0 --port 8000 # Run with streamable-http transport (for production HTTP deployments) python server.py --transport streamable-http --host 0.0.0.0 --port 8000 # Enable debug logging python server.py --debug

Transport Options:

  • stdio: Standard input/output communication (default, used by Claude Desktop)

  • sse: Server-Sent Events over HTTP (good for web-based clients)

  • streamable-http: Streamable HTTP transport (recommended for production HTTP deployments)

Environment Variables: You can also configure the server using environment variables:

export VECTRA_MCP_TRANSPORT=streamable-http export VECTRA_MCP_HOST=0.0.0.0 export VECTRA_MCP_PORT=8000 export VECTRA_MCP_DEBUG=true python server.py

MCP Configuration for Claude Desktop

  1. Add MCP Server to Claude Desktop:

# On macOS: # Open Claude Desktop configuration file code ~/Library/Application\ Support/Claude/claude_desktop_config.json # On Windows: # Open Claude Desktop configuration file notepad %APPDATA%/Claude/claude_desktop_config.json

Add the following configuration to the mcpServers section (update the paths to match your setup):

{ "mcpServers": { "vectra-ai-mcp": { "command": "/path/to/your/uv/binary", "args": [ "--directory", "/path/to/your/project/directory", "run", "server.py" ] } } }

Example with actual paths:

{ "mcpServers": { "vectra-ai-mcp": { "command": "/Users/yourusername/.local/bin/uv", "args": [ "--directory", "/Users/yourusername/path/to/vectra-mcp-project", "run", "server.py" ] } } }
  1. Debug - Find your uv installation path:

# Find where uv is installed which uv # or where uv
  1. Debug - Get your project's absolute path:

# From your project directory, run: pwd
  1. Restart Claude Desktop to load the new MCP server configuration.

Other MCP Client Setup

Once configured, you should be able to use Vectra AI Platform capabilities directly within Claude Desktop or other MCP clients through this MCP server!

For other MCP clients besides Claude Desktop, refer to the documentation links below:

For other MCP clients, refer to their respective documentation. The general pattern is similar - you'll need to specify the command and arguments to run the MCP server with the same configuration structure.

Setup - Docker Deployment

For production deployments or easier setup, you can run the Vectra AI MCP Server using Docker. We provide two options:

The easiest way to get started is using our pre-built Docker images from GitHub Container Registry.

Prerequisites

Quick Start Steps

  1. Configure environment variables:

# Copy the example environment file cp .env.example .env

Then edit the .env file with your actual Vectra AI Platform credentials.

  1. Run with pre-built image:

docker run -d \ --name vectra-mcp-server-http \ --env-file .env \ -e VECTRA_MCP_TRANSPORT=streamable-http \ -e VECTRA_MCP_HOST=0.0.0.0 \ -e VECTRA_MCP_PORT=8000 \ -p 8000:8000 \ --restart unless-stopped \ ghcr.io/vectra-ai-research/vectra-ai-mcp-server:latest

SSE Transport (Server-Sent Events)

docker run -d \ --name vectra-mcp-server-sse \ --env-file .env \ -e VECTRA_MCP_TRANSPORT=sse \ -e VECTRA_MCP_HOST=0.0.0.0 \ -e VECTRA_MCP_PORT=8000 \ -p 8000:8000 \ --restart unless-stopped \ ghcr.io/vectra-ai-research/vectra-ai-mcp-server:latest

Stdio Transport (For Local MCP Clients)

docker run -d \ --name vectra-mcp-server-stdio \ --env-file .env \ -e VECTRA_MCP_TRANSPORT=stdio \ --restart unless-stopped \ ghcr.io/vectra-ai-research/vectra-ai-mcp-server:latest
  1. Or use Docker Compose (Alternative):

Create a docker-compose.yml file:

version: '3.8' services: vectra-mcp-server: image: ghcr.io/vectra-ai-research/vectra-ai-mcp-server:latest container_name: vectra-mcp-server env_file: .env environment: - VECTRA_MCP_TRANSPORT=streamable-http - VECTRA_MCP_HOST=0.0.0.0 - VECTRA_MCP_PORT=8000 ports: - "8000:8000" restart: unless-stopped

Then run:

docker-compose up -d

Available Tags:

  • latest: Latest stable build from main branch

  • main: Latest build from main branch (same as latest)

  • v*: Specific version tags (e.g., v1.0.0)

💡 Tip: Pre-built images are automatically built and published via GitHub Actions whenever code is pushed to the main branch or when releases are tagged. This ensures you always get the latest tested version without needing to build locally.

Option 2: Build from Source

For development or customization, you can build the Docker image from source.

Prerequisites

  1. Install Docker and Docker Compose

    • Docker Desktop (includes Docker Compose)

    • Or install Docker Engine and Docker Compose separately on Linux

Build from Source Steps

  1. Clone/Download the project to your local machine

  2. Navigate to the project directory:

cd your-project-directory
  1. Configure environment variables:

# Copy the example environment file cp .env.example .env

Then edit the .env file with your actual Vectra AI Platform credentials.

  1. Build and run with Docker:

# Build the image docker build -t vectra-mcp-server .
  1. Run the locally built image:

Choose your transport mode and run with the locally built image:

Streamable HTTP Transport

docker run -d \ --name vectra-mcp-server-http \ --env-file .env \ -e VECTRA_MCP_TRANSPORT=streamable-http \ -e VECTRA_MCP_HOST=0.0.0.0 \ -e VECTRA_MCP_PORT=8000 \ -p 8000:8000 \ --restart unless-stopped \ vectra-mcp-server

SSE Transport

docker run -d \ --name vectra-mcp-server-sse \ --env-file .env \ -e VECTRA_MCP_TRANSPORT=sse \ -e VECTRA_MCP_HOST=0.0.0.0 \ -e VECTRA_MCP_PORT=8000 \ -p 8000:8000 \ --restart unless-stopped \ vectra-mcp-server

Stdio Transport

docker run -d \ --name vectra-mcp-server-stdio \ --env-file .env \ -e VECTRA_MCP_TRANSPORT=stdio \ --restart unless-stopped \ vectra-mcp-server

Docker Environment Variables

The Docker container supports all the same environment variables as the local setup, plus additional MCP server configuration:

MCP Server Configuration

  • VECTRA_MCP_TRANSPORT: Transport protocol (stdio, sse, or streamable-http) - default: stdio

  • VECTRA_MCP_HOST: Host to bind to for HTTP transports - default: 0.0.0.0

  • VECTRA_MCP_PORT: Port for HTTP transports - default: 8000

  • VECTRA_MCP_DEBUG: Enable debug logging - default: false

Accessing the HTTP Server

When running with HTTP transports (sse or streamable-http), the MCP server will be available at:

  • Streamable HTTP: http://localhost:8000/mcp

  • SSE: http://localhost:8000/sse

MCP Client Configuration for Docker

For HTTP-based MCP clients connecting to the Dockerized server, use the appropriate endpoint:

{ "mcpServers": { "vectra-ai-mcp": { "transport": { "type": "http", "url": "http://localhost:8000/" } } } }

Docker Health Checks

The Docker container includes health checks that will verify the server is running properly:

  • For stdio transport: Always reports healthy (no HTTP endpoint to check)

  • For HTTP transports: Checks HTTP endpoint availability

Note: MCP (Model Context Protocol) is an emerging and rapidly evolving technology. Exercise caution when using this server and follow security best practices, including proper credential management and network security measures.

-
security - not tested
A
license - permissive license
-
quality - not tested

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/vectra-ai-research/vectra-ai-mcp-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server