search_vectara
Execute a semantic search query using Vectara to retrieve contextually relevant results without generation. Provide a query, corpus keys, and API key to access matching search results from specified corpora.
Instructions
Run a semantic search query using Vectara, without generation.
Args:
query: str, The user query to run - required.
corpus_keys: list[str], List of Vectara corpus keys to use for the search - required. Please ask the user to provide one or more corpus keys.
api_key: str, The Vectara API key - required.
n_sentences_before: int, Number of sentences before the answer to include in the context - optional, default is 2.
n_sentences_after: int, Number of sentences after the answer to include in the context - optional, default is 2.
lexical_interpolation: float, The amount of lexical interpolation to use - optional, default is 0.005.
Returns:
The response from Vectara, including the matching search results.
Input Schema
Name | Required | Description | Default |
---|---|---|---|
api_key | No | ||
corpus_keys | No | ||
lexical_interpolation | No | ||
n_sentences_after | No | ||
n_sentences_before | No | ||
query | Yes |
Input Schema (JSON Schema)
{
"properties": {
"api_key": {
"default": "",
"title": "Api Key",
"type": "string"
},
"corpus_keys": {
"default": [],
"items": {
"type": "string"
},
"title": "Corpus Keys",
"type": "array"
},
"lexical_interpolation": {
"default": 0.005,
"title": "Lexical Interpolation",
"type": "number"
},
"n_sentences_after": {
"default": 2,
"title": "N Sentences After",
"type": "integer"
},
"n_sentences_before": {
"default": 2,
"title": "N Sentences Before",
"type": "integer"
},
"query": {
"title": "Query",
"type": "string"
}
},
"required": [
"query"
],
"title": "search_vectaraArguments",
"type": "object"
}