Skip to main content
Glama

AI Book Agent MCP Server

by trakru

AI Book Agent MCP Server

An MCP (Model Context Protocol) server that provides AI assistants with intelligent access to ML textbook content for creating accurate, source-grounded documentation. This pure Python implementation uses local models for complete privacy and cost efficiency.

Overview

This project transforms authoritative ML textbooks into a knowledge service that any MCP-compatible AI assistant can access. Using local LLMs (Qwen) and embeddings (sentence-transformers), it creates a private, cost-effective RAG system exposed via the official Python MCP SDK.

Why MCP?

Traditional Approach Limitations

  • Knowledge locked in a single application
  • Users must switch between tools
  • Cannot leverage AI assistants they already use
  • Difficult to integrate with existing workflows

MCP Server Benefits

  • Universal Access: Works with Claude Desktop, VS Code, and any MCP client
  • Workflow Integration: Use book knowledge directly in your IDE or chat
  • Composability: Combine with other MCP servers (filesystem, GitHub, etc.)
  • Future-Proof: As MCP ecosystem grows, your book agent automatically works with new tools

Architecture

┌─────────────────────┐ ┌─────────────────────┐ │ Claude Desktop │ │ VS Code │ │ "Explain ML drift │ │ "Generate docs │ │ from textbooks" │ │ for monitoring" │ └──────────┬──────────┘ └──────────┬──────────┘ │ │ └─────────────┬─────────────┘ │ MCP Protocol (stdio/HTTP) ▼ ┌─────────────────────────────────────┐ │ Python MCP Server │ │ (Official modelcontextprotocol/ │ │ python-sdk) │ ├─────────────────────────────────────┤ │ MCP Tools: │ │ - @mcp.tool() search_books() │ │ - @mcp.tool() get_chapter_content() │ │ - @mcp.tool() generate_section() │ │ - @mcp.tool() cite_sources() │ ├─────────────────────────────────────┤ │ RAG Components (same process): │ │ - EPUB Parser (ebooklib) │ │ - Embeddings (sentence-transformers)│ │ - Vector Store (ChromaDB/FAISS) │ │ - LLM Generation (Ollama/Qwen) │ └─────────────────────────────────────┘

Technology Stack

  • MCP Framework: Official Python SDK (mcp[cli])
  • Language: Python 3.11+
  • Embeddings: sentence-transformers (all-MiniLM-L6-v2)
  • LLM: Ollama with Qwen 2.5 7B
  • Vector Store: ChromaDB/FAISS
  • Book Parsing: ebooklib, BeautifulSoup4
  • Transport: stdio (local) or HTTP (remote)

Core Features as MCP Tools

1. searchBooks

Search across all indexed books for relevant content

{ name: "searchBooks", description: "Search ML textbooks for specific topics or concepts", inputSchema: { query: string, bookFilter?: string[], maxResults?: number, includeContext?: boolean } }

2. getChapterContent

Retrieve specific chapter or section content

{ name: "getChapterContent", description: "Get full content of a specific book chapter", inputSchema: { bookId: string, chapterId: string, format?: "markdown" | "plain" } }

3. generateSection

Generate documentation based on book content

{ name: "generateSection", description: "Generate documentation section grounded in textbook sources", inputSchema: { topic: string, outline?: string[], style?: "technical" | "tutorial" | "overview", maxSources?: number } }

4. citeSources

Get proper citations for content

{ name: "citeSources", description: "Generate proper citations for book content", inputSchema: { bookId: string, pageNumbers?: number[], format?: "APA" | "MLA" | "Chicago" } }

Resources

The server exposes book content as browsable resources:

/books ├── /designing-ml-systems │ ├── metadata.json │ ├── /chapters │ │ ├── /1-introduction │ │ ├── /2-ml-systems-design │ │ └── ... │ └── /topics │ ├── /monitoring │ ├── /deployment │ └── ... └── /other-ml-book └── ...

Prompts

Pre-configured prompts for common tasks:

doc_generator

name: doc_generator description: Generate technical documentation from book sources arguments: - name: topic description: The topic to document - name: audience description: Target audience (beginner/intermediate/advanced) - name: length description: Desired length (brief/standard/comprehensive)

concept_explainer

name: concept_explainer description: Explain ML concepts using textbook definitions arguments: - name: concept description: The concept to explain - name: include_examples description: Whether to include practical examples

Use Cases

1. In Claude Desktop

User: "Explain model drift using the ML textbooks" Claude: [Uses searchBooks tool to find drift content] [Retrieves relevant chapters] [Generates explanation with citations]

2. In VS Code

# User comment: "TODO: Add monitoring based on best practices" # AI Assistant uses book agent to generate monitoring code

3. Documentation Pipeline

# Automated doc generation using MCP tools mcp-client generate-docs \ --server ai-book-agent \ --topics "deployment,monitoring,testing" \ --output ml-best-practices.md

Getting Started

Prerequisites

  • Linux system (Ubuntu 22.04+ recommended)
  • Python 3.11+
  • Node.js 18+
  • 16GB RAM minimum
  • 20GB free disk space

Installation

# Clone the repository git clone <repository-url> cd ai-book-agent # Install Python dependencies (with MCP SDK) pip install "mcp[cli]" sentence-transformers chromadb ollama ebooklib beautifulsoup4 # Or use requirements.txt pip install -r requirements.txt # Install Ollama for local LLM curl -fsSL https://ollama.ai/install.sh | sh # Pull required models ollama pull qwen2.5:7b # Index existing books python scripts/index_books.py

Configuration

Configure the server:

# config.yaml embeddings: model: "all-MiniLM-L6-v2" device: "cpu" # or "cuda" generation: provider: "ollama" model: "qwen2.5:7b" base_url: "http://localhost:11434" books: data_dir: "data/epub" index_dir: "data/vector_db"

Add to Claude Desktop config:

{ "mcpServers": { "ai-book-agent": { "command": "python", "args": ["/path/to/ai-book-agent/server.py"] } } }

Basic Usage

Once configured, the tools are available in any MCP client:

You: What does the <author> say about feature engineering? Assistant: I'll search the ML textbooks for information about feature engineering. [Calling searchBooks with query="feature engineering"] [Found 5 relevant sections in "<Book Title>"] According to <author> in "<Book Title>": Feature engineering is described as... [content with citations]

Development

Adding New Books

# Place EPUB in data directory cp new-ml-book.epub data/epub/ # Re-index all books python scripts/index_books.py # Server will automatically pick up new content

Extending Tools

Add new tools directly in server.py:

from mcp.server.fastmcp import FastMCP mcp = FastMCP("ai-book-agent") @mcp.tool() def compare_approaches(approach1: str, approach2: str) -> str: """Compare different ML approaches from multiple books""" results1 = search_books(approach1, 3) results2 = search_books(approach2, 3) comparison = generate_comparison(results1, results2) return comparison @mcp.resource("book://{book_id}/summary") def get_book_summary(book_id: str) -> str: """Get a summary of a specific book""" return load_book_summary(book_id)

Testing

# Test MCP server locally mcp dev server.py # Test individual components python scripts/test_components.py python scripts/test_search.py # Run full test suite pytest tests/ # Test with Claude Desktop mcp install server.py

Project Structure

ai-book-agent/ ├── server.py # Main MCP server (entry point) ├── src/ # Python modules │ ├── parsers/ # EPUB parsing │ ├── embeddings/ # Embedding generation │ ├── search/ # Vector search & retrieval │ ├── generation/ # LLM integration (Ollama) │ └── utils/ # Configuration and helpers ├── scripts/ # Utility scripts │ ├── index_books.py # Index EPUB files │ ├── test_*.py # Test individual components │ └── setup.py # Initial setup ├── data/ │ ├── epub/ # Source EPUB files │ ├── processed/ # Processed book content │ └── vector_db/ # Vector store data ├── tests/ # Test suites ├── config.yaml # Configuration ├── requirements.txt # Python dependencies └── README.md

Pure Python Architecture

This project uses a simplified, single-language approach:

  • Python MCP Server: Official SDK handles MCP protocol and tool exposure
  • Integrated RAG: All ML components run in the same Python process
  • Local Models: Complete privacy with Ollama and sentence-transformers

Benefits of this approach:

  • Simpler deployment: Single Python service
  • Direct ML access: No API overhead between MCP and RAG
  • Easier debugging: One codebase, one process
  • Better performance: No network calls between components

Remote Access

For accessing the server from anywhere:

# Option 1: Cloudflare Tunnel (recommended) cloudflared tunnel create book-agent cloudflared tunnel run --url http://localhost:8080 book-agent # Option 2: Configure with your domain # See USER_GUIDE.md for detailed setup

Roadmap

  • Basic MCP server structure
  • EPUB parsing and indexing
  • Core search tools
  • Advanced RAG features
  • Multi-book cross-referencing
  • PDF support
  • Streaming responses for long content
  • Caching layer for performance
  • Book update notifications

Contributing

See USER_GUIDE.md for details on:

  • Adding new tools
  • Improving search algorithms
  • Supporting new book formats
  • Performance optimizations
-
security - not tested
F
license - not found
-
quality - not tested

hybrid server

The server is able to function both locally and remotely, depending on the configuration or use case.

Provides AI assistants with intelligent access to ML textbook content for creating accurate, source-grounded documentation using local models for privacy and cost efficiency.

  1. Overview
    1. Why MCP?
      1. Traditional Approach Limitations
      2. MCP Server Benefits
    2. Architecture
      1. Technology Stack
        1. Core Features as MCP Tools
          1. searchBooks
          2. getChapterContent
          3. generateSection
          4. citeSources
        2. Resources
          1. Prompts
            1. doc_generator
            2. concept_explainer
          2. Use Cases
            1. In Claude Desktop
            2. In VS Code
            3. Documentation Pipeline
          3. Getting Started
            1. Prerequisites
            2. Installation
            3. Configuration
            4. Basic Usage
          4. Development
            1. Adding New Books
            2. Extending Tools
          5. Testing
            1. Project Structure
              1. Pure Python Architecture
                1. Remote Access
                  1. Roadmap
                    1. Contributing

                      Related MCP Servers

                      • A
                        security
                        A
                        license
                        A
                        quality
                        A Model Context Protocol implementation that enables AI assistants to interact with markdown documentation files, providing capabilities for document management, metadata handling, search, and documentation health analysis.
                        Last updated -
                        14
                        346
                        11
                        TypeScript
                        MIT License
                        • Apple
                        • Linux
                      • -
                        security
                        A
                        license
                        -
                        quality
                        A Model Context Protocol implementation that enables AI-powered access to documentation resources, featuring URI-based navigation, template matching, and structured documentation management.
                        Last updated -
                        3
                        Python
                        MIT License
                      • -
                        security
                        A
                        license
                        -
                        quality
                        Provides tools for retrieving and processing documentation through vector search, enabling AI assistants to augment their responses with relevant documentation context.
                        Last updated -
                        62
                        TypeScript
                        MIT License
                        • Apple
                      • A
                        security
                        A
                        license
                        A
                        quality
                        Provides a structured documentation system for context preservation in AI assistant environments, helping users create and manage memory banks for their projects.
                        Last updated -
                        3
                        10
                        Python
                        MIT License
                        • Linux
                        • Apple

                      View all related MCP servers

                      MCP directory API

                      We provide all the information about MCP servers via our MCP API.

                      curl -X GET 'https://glama.ai/api/mcp/v1/servers/trakru/mcp-library-server'

                      If you have feedback or need assistance with the MCP directory API, please join our Discord server