Skip to main content
Glama

MCP Codebase Insight

by tosin2013
qdrant_setup.md1.19 kB
# Qdrant Setup Guide > 🚧 **Documentation In Progress** > > This documentation is being actively developed. More details will be added soon. ## Overview This guide covers setting up Qdrant vector database for MCP Codebase Insight. ## Installation Methods ### 1. Using Docker (Recommended) ```bash # Pull the Qdrant image docker pull qdrant/qdrant # Start Qdrant container docker run -p 6333:6333 -v $(pwd)/qdrant_storage:/qdrant/storage qdrant/qdrant ``` ### 2. From Binary Download from [Qdrant Releases](https://github.com/qdrant/qdrant/releases) ### 3. From Source ```bash git clone https://github.com/qdrant/qdrant cd qdrant cargo build --release ``` ## Configuration 1. **Create Collection** ```python from qdrant_client import QdrantClient client = QdrantClient("localhost", port=6333) client.create_collection( collection_name="code_vectors", vectors_config={"size": 384, "distance": "Cosine"} ) ``` 2. **Verify Setup** ```bash curl http://localhost:6333/collections/code_vectors ``` ## Next Steps - [Configuration Guide](configuration.md) - [Quick Start Guide](quickstart.md) - [API Reference](../api/rest-api.md)

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/tosin2013/mcp-codebase-insight'

If you have feedback or need assistance with the MCP directory API, please join our Discord server