Skip to main content
Glama

MCP Codebase Insight

by tosin2013
installation.md3.67 kB
# Installation Guide > 🚧 **Documentation In Progress** > > This documentation is being actively developed. More details will be added soon. ## Prerequisites Before installing MCP Codebase Insight, ensure you have the following: - Python 3.11 or higher - pip (Python package installer) - Git - Docker (optional, for containerized deployment) - 4GB RAM minimum (8GB recommended) - 2GB free disk space ## System Requirements ### Operating Systems - Linux (Ubuntu 20.04+, CentOS 8+) - macOS (10.15+) - Windows 10/11 with WSL2 ### Python Dependencies - FastAPI - Pydantic - httpx - sentence-transformers - qdrant-client ## Installation Methods ### 1. Using pip (Recommended) ```bash # Create and activate a virtual environment python -m venv venv source venv/bin/activate # On Windows: venv\Scripts\activate # Install MCP Codebase Insight pip install mcp-codebase-insight # Verify installation mcp-codebase-insight --version ``` ### 2. Using Docker ```bash # Pull the Docker image docker pull modelcontextprotocol/mcp-codebase-insight # Create necessary directories mkdir -p docs knowledge cache # Run the container docker run -p 3000:3000 \ --env-file .env \ -v $(pwd)/docs:/app/docs \ -v $(pwd)/knowledge:/app/knowledge \ -v $(pwd)/cache:/app/cache \ modelcontextprotocol/mcp-codebase-insight ``` ### 3. From Source ```bash # Clone the repository git clone https://github.com/modelcontextprotocol/mcp-codebase-insight.git cd mcp-codebase-insight # Create and activate virtual environment python -m venv venv source venv/bin/activate # On Windows: venv\Scripts\activate # Install dependencies pip install -r requirements.txt # Install in development mode pip install -e . ``` ## Environment Setup 1. Create a `.env` file in your project root: ```bash MCP_HOST=127.0.0.1 MCP_PORT=3000 QDRANT_URL=http://localhost:6333 MCP_DOCS_CACHE_DIR=./docs MCP_ADR_DIR=./docs/adrs MCP_KB_STORAGE_DIR=./knowledge MCP_DISK_CACHE_DIR=./cache LOG_LEVEL=INFO ``` 2. Create required directories: ```bash mkdir -p docs/adrs knowledge cache ``` ## Post-Installation Steps 1. **Vector Database Setup** - Follow the [Qdrant Setup Guide](qdrant_setup.md) to install and configure Qdrant 2. **Verify Installation** ```bash # Start the server mcp-codebase-insight --host 127.0.0.1 --port 3000 # In another terminal, test the health endpoint curl http://localhost:3000/health ``` 3. **Initial Configuration** - Configure authentication (if needed) - Set up logging - Configure metrics collection ## Common Installation Issues ### 1. Dependencies Installation Fails ```bash # Try upgrading pip pip install --upgrade pip # Install wheel pip install wheel # Retry installation pip install mcp-codebase-insight ``` ### 2. Port Already in Use ```bash # Check what's using port 3000 lsof -i :3000 # On Linux/macOS netstat -ano | findstr :3000 # On Windows # Use a different port mcp-codebase-insight --port 3001 ``` ### 3. Permission Issues ```bash # Fix directory permissions chmod -R 755 docs knowledge cache ``` ## Next Steps - Read the [Configuration Guide](configuration.md) for detailed setup options - Follow the [Quick Start Tutorial](quickstart.md) to begin using the system - Check the [Best Practices](../development/best-practices.md) for optimal usage - Follow the [Qdrant Setup](qdrant_setup.md) to set up the vector database ## Support If you encounter any issues during installation: 1. Check the [Troubleshooting Guide](../troubleshooting/common-issues.md) 2. Search existing [GitHub Issues](https://github.com/modelcontextprotocol/mcp-codebase-insight/issues) 3. Open a new issue if needed

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/tosin2013/mcp-codebase-insight'

If you have feedback or need assistance with the MCP directory API, please join our Discord server