Skip to main content
Glama

mcp-adr-analysis-server

by tosin2013

generate_adrs_from_prd

Automatically create Architectural Decision Records (ADRs) from Product Requirements Documents (PRDs) using advanced prompting techniques and domain-specific insights for precise architectural documentation.

Instructions

Generate Architectural Decision Records from a Product Requirements Document with advanced prompting techniques (APE + Knowledge Generation)

Input Schema

NameRequiredDescriptionDefault
conversationContextNoRich context from the calling LLM about user goals and discussion history
enhancedModeNoEnable advanced prompting features (APE + Knowledge Generation)
knowledgeEnhancementNoEnable Knowledge Generation for domain-specific insights
outputDirectoryNoDirectory to output generated ADRs (optional, uses configured ADR_DIRECTORY if not provided)
prdPathYesPath to the PRD.md file
prdTypeNoType of PRD for optimized knowledge generationgeneral
promptOptimizationNoEnable Automatic Prompt Engineering for optimized ADR generation

Input Schema (JSON Schema)

{ "properties": { "conversationContext": { "additionalProperties": false, "description": "Rich context from the calling LLM about user goals and discussion history", "properties": { "budget": { "description": "Budget or resource constraints (e.g., \"limited budget\", \"enterprise scale\")", "type": "string" }, "constraints": { "description": "Limitations, compliance requirements, or restrictions (e.g., [\"GDPR compliance\", \"budget under $50k\", \"minimal downtime\"])", "items": { "type": "string" }, "type": "array" }, "focusAreas": { "description": "Specific areas of concern or interest (e.g., [\"security\", \"performance\", \"maintainability\"])", "items": { "type": "string" }, "type": "array" }, "humanRequest": { "description": "Original human request text for context restoration and knowledge graph storage", "type": "string" }, "previousContext": { "description": "Relevant context from previous conversation (e.g., \"User mentioned concerns about database splitting\")", "type": "string" }, "projectPhase": { "description": "Current project phase (e.g., \"planning\", \"development\", \"migration\", \"production\")", "type": "string" }, "requirements": { "description": "Specific requirements or preferences mentioned", "items": { "type": "string" }, "type": "array" }, "timeline": { "description": "Timeline or urgency information (e.g., \"launch in 3 months\", \"urgent migration\")", "type": "string" }, "userGoals": { "description": "Primary objectives the user wants to achieve (e.g., [\"microservices migration\", \"improve security\"])", "items": { "type": "string" }, "type": "array" }, "userRole": { "description": "User's role or expertise level (e.g., \"senior architect\", \"developer\", \"project manager\")", "type": "string" } }, "type": "object" }, "enhancedMode": { "default": true, "description": "Enable advanced prompting features (APE + Knowledge Generation)", "type": "boolean" }, "knowledgeEnhancement": { "default": true, "description": "Enable Knowledge Generation for domain-specific insights", "type": "boolean" }, "outputDirectory": { "description": "Directory to output generated ADRs (optional, uses configured ADR_DIRECTORY if not provided)", "type": "string" }, "prdPath": { "description": "Path to the PRD.md file", "type": "string" }, "prdType": { "default": "general", "description": "Type of PRD for optimized knowledge generation", "enum": [ "web-application", "mobile-app", "microservices", "data-platform", "api-service", "general" ], "type": "string" }, "promptOptimization": { "default": true, "description": "Enable Automatic Prompt Engineering for optimized ADR generation", "type": "boolean" } }, "required": [ "prdPath" ], "type": "object" }

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/tosin2013/mcp-adr-analysis-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server