Skip to main content
Glama
reflexion-implementation-strategy.md12.6 kB
# Reflexion Framework Implementation Strategy ## Overview This document outlines the detailed implementation strategy for the Reflexion framework, including the Actor-Evaluator-Self-Reflection pattern, memory management systems, and learning workflows for continuous improvement in MCP ADR Analysis Server tools. ## Implementation Architecture ### Core Components Implementation #### 1. Actor Component **Purpose**: Execute tasks with memory-enhanced context and learning integration **Implementation Approach**: ```typescript // Pseudo-implementation structure class ReflexionActor { async executeWithMemory( task: TaskDefinition, context: any, memories: ReflexionMemory[] ): Promise<TaskAttempt> } ``` **Actor Responsibilities**: - **Memory Integration**: Incorporate relevant past experiences into current task execution - **Context Enhancement**: Enrich task context with lessons learned and strategies - **Strategy Selection**: Choose optimal approaches based on past successes and failures - **Trajectory Generation**: Create detailed execution paths for evaluation and learning #### 2. Evaluator Component **Purpose**: Assess performance using multiple criteria and generate actionable feedback **Evaluation Criteria Implementation**: ##### Task Success (Weight: 25%) - **Metric**: Binary success/failure with quality gradations - **Evaluation**: Compare intended vs actual outcomes - **Scoring**: 0-1 scale with partial credit for near-misses ##### Quality Assessment (Weight: 20%) - **Metric**: Multi-dimensional quality evaluation - **Evaluation**: Accuracy, completeness, relevance, clarity - **Scoring**: Weighted average of quality dimensions ##### Efficiency Analysis (Weight: 15%) - **Metric**: Resource utilization and time optimization - **Evaluation**: Compare to baseline and previous attempts - **Scoring**: Relative efficiency improvement ##### Innovation Evaluation (Weight: 10%) - **Metric**: Novelty and creativity in approach - **Evaluation**: Assess unique strategies and solutions - **Scoring**: Creativity and effectiveness balance ##### Learning Integration (Weight: 30%) - **Metric**: How well past lessons were applied - **Evaluation**: Evidence of memory utilization and improvement - **Scoring**: Learning application effectiveness #### 3. Self-Reflection Component **Purpose**: Generate linguistic feedback and extract actionable lessons **Reflection Types Implementation**: ##### Success Analysis - **Focus**: What worked well and why - **Output**: Successful patterns, effective strategies, replicable approaches - **Integration**: Strengthen successful memory patterns ##### Failure Analysis - **Focus**: What went wrong and how to prevent it - **Output**: Error patterns, failure modes, prevention strategies - **Integration**: Create warning memories and avoidance strategies ##### Pattern Recognition - **Focus**: Recurring themes across multiple attempts - **Output**: Meta-patterns, general principles, transferable insights - **Integration**: Build semantic memory from episodic experiences ##### Strategy Refinement - **Focus**: How to improve approaches and methods - **Output**: Enhanced strategies, optimized workflows, better practices - **Integration**: Update procedural memory with refined methods ## Memory Management System ### Memory Types and Storage #### 1. Episodic Memory **Content**: Specific task attempts and their outcomes **Structure**: ```json { "memoryId": "episode_adr_suggestion_2024_001", "taskType": "adr-suggestion", "context": { "project": "microservices-platform" }, "outcome": { "success": true, "userRating": 4.5 }, "lessons": ["Domain knowledge crucial for relevance"], "applicableScenarios": ["microservices", "distributed-systems"] } ``` #### 2. Semantic Memory **Content**: General principles and knowledge extracted from experiences **Structure**: ```json { "memoryId": "semantic_adr_principles_001", "principle": "ADRs should address specific architectural concerns", "evidence": ["episode_001", "episode_015", "episode_032"], "confidence": 0.85, "applicability": ["all-adr-tasks"] } ``` #### 3. Procedural Memory **Content**: Improved methods and step-by-step approaches **Structure**: ```json { "memoryId": "procedure_context_analysis_v2", "procedure": "Enhanced context analysis workflow", "steps": ["1. Technology detection", "2. Pattern analysis", "3. Constraint identification"], "improvements": ["Added constraint analysis step"], "successRate": 0.78 } ``` #### 4. Meta-Memory **Content**: Knowledge about learning patterns and memory effectiveness **Structure**: ```json { "memoryId": "meta_learning_rate_analysis", "insight": "Learning plateaus after 15-20 attempts without new challenges", "evidence": ["learning_progress_adr", "learning_progress_analysis"], "recommendation": "Introduce complexity variations every 20 attempts" } ``` ### Memory Persistence Using File System #### File Organization Strategy ``` ./reflexion-memory/ ├── episodic/ │ ├── adr-suggestion/ │ ├── project-analysis/ │ └── research-integration/ ├── semantic/ │ ├── principles/ │ ├── patterns/ │ └── best-practices/ ├── procedural/ │ ├── workflows/ │ ├── strategies/ │ └── methods/ ├── meta/ │ ├── learning-patterns/ │ ├── memory-effectiveness/ │ └── improvement-trends/ └── indexes/ ├── memory-catalog.json ├── relevance-index.json └── temporal-index.json ``` #### Memory Persistence Implementation ```typescript // Prompt-driven memory persistence export async function persistMemoryWithPrompt(memory: ReflexionMemory) { const persistencePrompt = ` # Memory Persistence Request Please save the following Reflexion memory to the appropriate file location. ## Memory Details - **Memory ID**: ${memory.memoryId} - **Type**: ${memory.memoryType} - **Category**: ${memory.metadata.category} - **Created**: ${memory.createdAt} ## Memory Content ${JSON.stringify(memory.content, null, 2)} ## File Operations Required 1. **Determine File Path**: Based on memory type and category 2. **Create Directory**: If it doesn't exist 3. **Save Memory File**: In JSON format with proper naming 4. **Update Index**: Add entry to memory catalog and relevant indexes 5. **Validate Storage**: Ensure file was saved correctly ## Expected File Structure - Path: ./reflexion-memory/{type}/{category}/{memoryId}.json - Index: ./reflexion-memory/indexes/memory-catalog.json - Backup: Create backup if updating existing memory Please execute these file operations and confirm successful storage. `; return { content: [{ type: 'text', text: persistencePrompt }], metadata: { operation: 'memory_persistence', memoryId: memory.memoryId, memoryType: memory.memoryType } }; } ``` ## Learning Workflows ### Workflow 1: Single Task Reflexion **Duration**: 3-5 minutes per task **Steps**: 1. **Memory Retrieval** (30s): Find relevant past experiences 2. **Task Execution** (60-180s): Execute with memory-enhanced context 3. **Performance Evaluation** (30s): Score outcomes against criteria 4. **Self-Reflection** (60s): Generate lessons and insights 5. **Memory Integration** (30s): Update memory system ### Workflow 2: Continuous Learning Loop **Duration**: Ongoing across multiple tasks **Process**: 1. **Pattern Detection**: Identify recurring themes across attempts 2. **Meta-Learning**: Learn about learning effectiveness 3. **Strategy Evolution**: Refine approaches based on accumulated evidence 4. **Knowledge Consolidation**: Strengthen validated memories, weaken contradicted ones ### Workflow 3: Cross-Task Learning Transfer **Duration**: Variable based on task similarity **Process**: 1. **Similarity Assessment**: Identify related task types and contexts 2. **Knowledge Transfer**: Apply lessons from one domain to another 3. **Adaptation**: Modify strategies for new contexts 4. **Validation**: Test transferred knowledge effectiveness ## Integration with MCP Tools ### Tool-Specific Learning Patterns #### ADR Generation Tools **Learning Focus Areas**: - **Context Analysis Accuracy**: Learn to better understand project requirements - **Stakeholder Alignment**: Improve ADR relevance and clarity - **Decision Quality**: Learn from ADR adoption and feedback outcomes **Reflexion Pattern**: ```typescript export async function generateAdrsWithReflexion(context: any) { // Step 1: Retrieve relevant memories const memories = await retrieveRelevantMemories('adr-generation', context); // Step 2: Create memory-enhanced prompt const enhancedPrompt = await enhancePromptWithMemories( createAdrGenerationPrompt(context), memories ); // Step 3: Execute with reflexion tracking const result = await executeWithReflexion(enhancedPrompt, { taskType: 'adr-generation', evaluationCriteria: ['relevance', 'clarity', 'feasibility', 'completeness'], memoryIntegration: true }); return result; } ``` #### Analysis Tools **Learning Focus Areas**: - **Technology Detection**: Improve accuracy of technology identification - **Pattern Recognition**: Better identify architectural patterns - **Context Understanding**: Enhanced project context analysis #### Research Tools **Learning Focus Areas**: - **Question Quality**: Generate more effective research questions - **Source Evaluation**: Better assess research source quality - **Synthesis Skills**: Improve research integration and synthesis ### Memory-Enhanced Prompt Generation ```typescript export async function enhancePromptWithMemories( basePrompt: PromptObject, memories: ReflexionMemory[] ): Promise<PromptObject> { const memoryContext = memories.map(memory => ({ lesson: memory.content.summary, applicability: memory.content.applicableScenarios, confidence: memory.relevanceScore, evidence: memory.content.evidence })); const enhancedPrompt = ` # Memory-Enhanced Task Execution ## Original Task ${basePrompt.prompt} ## Relevant Past Experiences ${memoryContext.map((mem, index) => ` ### Experience ${index + 1} (Confidence: ${mem.confidence}) **Lesson**: ${mem.lesson} **Applicable to**: ${mem.applicability.join(', ')} **Evidence**: ${mem.evidence.join('; ')} `).join('\n')} ## Memory-Informed Approach Based on past experiences, please: 1. **Apply Relevant Lessons**: Use the lessons learned from similar situations 2. **Avoid Known Pitfalls**: Be aware of common mistakes and failure patterns 3. **Leverage Successful Strategies**: Build on approaches that have worked well 4. **Adapt to Context**: Modify strategies based on current context differences ## Enhanced Instructions ${basePrompt.instructions} ## Success Criteria - Apply at least 2 relevant lessons from past experiences - Demonstrate learning from previous mistakes - Show improvement over baseline approaches - Generate new insights for future learning Execute the task with memory-informed decision making and document how past experiences influenced your approach. `; return { prompt: enhancedPrompt, instructions: basePrompt.instructions, context: { ...basePrompt.context, memoriesUsed: memories.map(m => m.memoryId), memoryEnhanced: true } }; } ``` ## Performance Optimization ### Memory Retrieval Optimization - **Relevance Scoring**: Use context similarity and past success rates - **Temporal Weighting**: Prefer recent memories while preserving valuable old ones - **Category Filtering**: Focus on memories from similar task types - **Quality Thresholding**: Only retrieve high-quality, validated memories ### Learning Efficiency - **Incremental Updates**: Update memories incrementally rather than wholesale replacement - **Batch Processing**: Process multiple related memories together - **Lazy Loading**: Load memories only when needed - **Compression**: Consolidate similar memories to reduce storage and retrieval overhead ### Resource Management - **Memory Limits**: Implement configurable limits on memory storage - **Cleanup Strategies**: Automatic removal of outdated or low-value memories - **Caching**: Cache frequently accessed memories for faster retrieval - **Indexing**: Maintain efficient indexes for fast memory search This implementation strategy provides a comprehensive roadmap for building the Reflexion framework while maintaining the 100% prompt-driven architecture and ensuring effective learning and memory management across MCP tools.

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/tosin2013/mcp-adr-analysis-server'

If you have feedback or need assistance with the MCP directory API, please join our Discord server