Skip to main content
Glama

SDOF Knowledge Base

README.mdβ€’6.41 kB
# SDOF MCP - Structured Decision Optimization Framework [![Node.js](https://img.shields.io/badge/Node.js-18%2B-green.svg)](https://nodejs.org/) [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT) [![MCP](https://img.shields.io/badge/MCP-Compatible-blue.svg)](https://modelcontextprotocol.io/) > **Next-generation knowledge management system with 5-phase optimization workflow** The **Structured Decision Optimization Framework (SDOF) Knowledge Base** is a Model Context Protocol (MCP) server that provides persistent memory and context management for AI systems through a structured 5-phase optimization workflow. ## πŸš€ Quick Start ### Prerequisites - Node.js 18+ - OpenAI API Key (for embeddings) - MCP-compatible client (Claude Desktop, etc.) ### Installation ```bash # Clone the repository git clone https://github.com/your-username/sdof-mcp.git cd sdof-mcp # Install dependencies npm install npm run build # Configure environment cp .env.example .env # Edit .env with your OpenAI API key # Start the server npm start ``` ## πŸ“– Documentation - **[Installation Guide](SDOF_INSTALLATION_GUIDE.md)** - Complete setup instructions - **[Migration Guide](README_SDOF_MIGRATION.md)** - Migration from ConPort - **[API Documentation](docs/MCP_USAGE.md)** - MCP tool reference - **[Setup Guide](docs/SETUP_GUIDE.md)** - Detailed configuration ## ✨ Features ### 🎯 5-Phase Optimization Workflow - **Phase 1**: Exploration - Solution discovery and brainstorming - **Phase 2**: Analysis - Detailed evaluation and optimization - **Phase 3**: Implementation - Code development and testing - **Phase 4**: Evaluation - Performance and quality assessment - **Phase 5**: Integration - Learning consolidation and documentation ### 🧠 Advanced Knowledge Management - **Vector Embeddings**: Semantic search with OpenAI embeddings - **Persistent Storage**: MongoDB/SQLite with vector indexing - **Prompt Caching**: Optimized for LLM efficiency - **Schema Validation**: Structured content types - **Multi-Interface**: Both MCP tools and HTTP API ### πŸ”§ Content Types - `text` - General documentation and notes - `code` - Code implementations and examples - `decision` - Decision records and rationale - `analysis` - Analysis results and findings - `solution` - Solution descriptions and designs - `evaluation` - Evaluation reports and metrics - `integration` - Integration documentation and guides ## πŸ› οΈ MCP Tools ### Primary Tool: `store_sdof_plan` Store structured knowledge with metadata: ```typescript { plan_content: string; // Markdown content metadata: { planTitle: string; // Descriptive title planType: ContentType; // Content type (text, code, decision, etc.) tags?: string[]; // Categorization tags phase?: string; // SDOF phase (1-5) cache_hint?: boolean; // Mark for prompt caching } } ``` ### Example Usage ```javascript // Store a decision record { "server_name": "sdof_knowledge_base", "tool_name": "store_sdof_plan", "arguments": { "plan_content": "# Database Selection\n\nChose MongoDB for vector storage due to...", "metadata": { "planTitle": "Database Architecture Decision", "planType": "decision", "tags": ["database", "architecture"], "phase": "2", "cache_hint": true } } } ``` ## πŸ—οΈ Architecture ``` β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ AI Clients │───▢│ SDOF Knowledge │───▢│ Database β”‚ β”‚ (Claude, etc.) β”‚ β”‚ Base MCP β”‚ β”‚ (MongoDB/ β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚ Server β”‚ β”‚ SQLite) β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚ β–Ό β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ HTTP API β”‚ β”‚ (Port 3000) β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ ``` ## πŸ”§ Configuration ### MCP Client Configuration Add to your MCP client configuration: ```json { "mcpServers": { "sdof_knowledge_base": { "type": "stdio", "command": "node", "args": ["path/to/sdof-mcp/build/index.js"], "env": { "OPENAI_API_KEY": "your-openai-api-key" }, "alwaysAllow": ["store_sdof_plan"] } } } ``` ### Environment Variables ```bash # Required OPENAI_API_KEY=sk-proj-your-openai-api-key # Optional EMBEDDING_MODEL=text-embedding-3-small HTTP_PORT=3000 MONGODB_URI=mongodb://localhost:27017/sdof ``` ## πŸ§ͺ Testing ```bash # Run tests npm test # Run system validation node build/test-unified-system.js # Performance benchmarks npm run test:performance ``` ## πŸ“Š Performance Target metrics: - **Query Response**: <500ms average - **Embedding Generation**: <2s per request - **Vector Search**: <100ms for similarity calculations - **Database Operations**: <50ms for CRUD operations ## 🀝 Contributing 1. Fork the repository 2. Create a feature branch: `git checkout -b feature/amazing-feature` 3. Make changes to TypeScript files in `src/` 4. Run tests: `npm test` 5. Build: `npm run build` 6. Commit changes: `git commit -m 'Add amazing feature'` 7. Push to branch: `git push origin feature/amazing-feature` 8. Open a Pull Request ## πŸ“„ License This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details. ## πŸ†˜ Support - **Documentation**: Check the [docs/](docs/) directory - **Issues**: [GitHub Issues](https://github.com/your-username/sdof-mcp/issues) - **Installation Help**: See [SDOF_INSTALLATION_GUIDE.md](SDOF_INSTALLATION_GUIDE.md) ## πŸŽ‰ Success Indicators You know the system is working correctly when: - βœ… No authentication errors in logs - βœ… `store_sdof_plan` tool responds successfully - βœ… Knowledge entries are stored and retrievable - βœ… Query performance meets targets (<500ms) - βœ… Test suite passes completely --- **Built with ❀️ for the AI community**

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/tgf-between-your-legs/sdof-mcp'

If you have feedback or need assistance with the MCP directory API, please join our Discord server