Skip to main content
Glama
tools_4.py1.61 kB
from pydantic import BaseModel from typing import Optional from main import __mcp_server__, success_response, error_response import httpx class CBETASearchSCParams(BaseModel): q: str # 搜尋關鍵詞(支持簡體/繁體) fields: Optional[str] = None # 限定欄位,如 "juan,text" rows: Optional[int] = 10 # 回傳結果數量 start: Optional[int] = 0 # 起始位置 order: Optional[str] = None # 排序方式 @__mcp_server__.tool() async def cbeta_search_sc(params: CBETASearchSCParams): """ 🧩 CBETA 簡體/繁體搜尋工具(無需手動轉換) 📥 請求參數: - q (str):關鍵詞(支持簡體或繁體,如 "四圣谛" 或 "四聖諦") - fields, rows, start, order 等同 CBETA API 參數 📤 回傳格式: { "q": "四圣谛", # 原始查詢詞 "hits": 41 # 匹配筆數 } """ try: query_params = { "q": params.q, # 直接使用原始輸入,CBETA 會自行處理簡繁轉換 "fields": params.fields, "rows": params.rows, "start": params.start, "order": params.order } async with httpx.AsyncClient() as client: resp = await client.get("https://api.cbetaonline.cn/search/sc", params=query_params) resp.raise_for_status() data = resp.json() return success_response({ "q": params.q, "hits": data.get("hits", 0) }) except Exception as e: return error_response(f"查詢 CBETA 失敗:{str(e)}")

Latest Blog Posts

MCP directory API

We provide all the information about MCP servers via our MCP API.

curl -X GET 'https://glama.ai/api/mcp/v1/servers/tendayspace/CbetaMCP'

If you have feedback or need assistance with the MCP directory API, please join our Discord server