Skip to main content
Glama

CbetaMCP

by tendayspace

🧠 MCP 聚合工具服务 / MCP Aggregated Tool Service

License Python FastAPI Dockerized

一个基于 FastAPI + fastapi_mcp 实现的多工具统一接入平台,支持模块化、自动注册与异步扩展。适用于将多个 AI 工具或微服务聚合为一个统一接口服务,支持标准化输入输出格式,便于前端集成或 LLM 系统调用。

A modular, extensible and FastAPI-based MCP (Multi-Component Platform) tool aggregation service. Easily connect and expose independent tools through standardized APIs. Perfect for frontend integration or large language model (LLM) orchestration.


🌟 功能特点 / Features

  • ✅ 支持多工具自动注册(基于目录扫描)

  • ✅ 所有接口统一 POST 方式 + BaseModel 校验

  • ✅ 支持异步 httpx 接口调用

  • ✅ 标准化 JSON 响应格式(success/error)

  • ✅ Docker 一键部署支持

  • ✅ 配套开发说明文档,便于扩展工具模块


📁 项目结构 / Project Structure

. ├── main.py # FastAPI 主程序,含 MCP 注册逻辑 ├── tools/ # 工具目录,每个文件一个功能 ├── Dockerfile # 构建镜像用 ├── docker-compose.yml # 一键部署支持 ├── mcp_tool_开发说明.md # 开发者使用规范文档(中文) └── README.md

🚀 快速开始 / Quick Start

🧰 依赖要求 / Requirements

  • Python 3.8+

  • pip

  • Docker / Docker Compose(可选)

📦 本地运行 / Local Dev

# 安装依赖 pip install -r requirements.txt # 启动服务 python main.py

默认服务地址:http://localhost:8000/mcp

🐳 使用 Docker 部署 / Docker Deployment

# 构建 & 运行 docker-compose up --build -d # 访问 MCP 工具服务 http://localhost:8000/mcp

🧱 工具模块开发规范 / Tool Module Guidelines

每个工具应放置于 tools/ 目录下(可多层嵌套),并包含:

  1. 使用 pydantic.BaseModel 定义参数;

  2. 使用 @__mcp_server__.tool() 注册工具函数;

  3. 返回 success_response()error_response()

  4. (可选)异步调用外部接口 + 缓存结果。

示例参考:

from pydantic import BaseModel from main import __mcp_server__, success_response class MyParams(BaseModel): name: str @__mcp_server__.tool() async def hello_tool(params: MyParams): return success_response({"message": f"Hello {params.name}!"})

🔗 接口说明 / API Usage

所有工具接口统一通过 /mcp 路径访问,自动根据模块注册。

请求方式:POST
请求格式:application/json
响应格式:

{ "status": "success", "result": { ... } }

📚 文档参考 / Docs


📄 License

MIT License © 2025 [your-name]

-
security - not tested
A
license - permissive license
-
quality - not tested

remote-capable server

The server can be hosted and run remotely because it primarily relies on remote services or has no dependency on the local environment.

A modular, extensible FastAPI-based platform that aggregates multiple AI tools and microservices into a unified interface with standardized I/O formats, perfect for frontend integration or LLM system orchestration.

  1. 🌟 功能特点 / Features
    1. 📁 项目结构 / Project Structure
      1. 🚀 快速开始 / Quick Start
        1. 🧰 依赖要求 / Requirements
        2. 📦 本地运行 / Local Dev
        3. 🐳 使用 Docker 部署 / Docker Deployment
      2. 🧱 工具模块开发规范 / Tool Module Guidelines
        1. 🔗 接口说明 / API Usage
          1. 📚 文档参考 / Docs
            1. 📄 License

              Related MCP Servers

              • A
                security
                A
                license
                A
                quality
                A lightweight, modular API service that provides useful tools like weather, date/time, calculator, search, email, and task management through a RESTful interface, designed for integration with AI agents and automated workflows.
                Last updated -
                5
                1
                MIT License
              • -
                security
                A
                license
                -
                quality
                A server implementation that provides a unified interface for OpenAI services, Git repository analysis, and local filesystem operations through REST API endpoints.
                Last updated -
                GPL 3.0
                • Linux
                • Apple
              • -
                security
                F
                license
                -
                quality
                A unified API server that enables interaction with multiple AI model providers like Anthropic and OpenAI through a consistent interface, supporting chat completions, tool calling, and context handling.
                Last updated -
              • -
                security
                F
                license
                -
                quality
                A modular system for building and orchestrating AI applications through microservices, featuring LLM interactions, Jupyter notebook execution, and visual workflow capabilities.

              View all related MCP servers

              MCP directory API

              We provide all the information about MCP servers via our MCP API.

              curl -X GET 'https://glama.ai/api/mcp/v1/servers/tendayspace/CbetaMCP'

              If you have feedback or need assistance with the MCP directory API, please join our Discord server